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Abstract. In this paper, we propose a rigorous computational method for detecting homoclinic
tangencies and structurally unstable connecting orbits. It is a combination of several tools and
algorithms, including the interval arithmetic, the subdivision algorithm, the Conley index theory,
and the computational homology theory. As an example we prove the existence of generic homoclinic
tangencies in the Hénon family.
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1. Introduction. In this paper, we present a method for proving the existence
of homoclinic tangencies and structurally unstable connecting orbits. More precisely
we are interested in proving the existence of generic tangencies in a one-parameter
family of maps; that is, a quadratic tangency that unfolds generically in the family.
The importance of the generic homoclinic tangency comes from the fact that it implies
the occurrence of the Newhouse phenomena [17] and strange attractors [12].

To explain how the method works, we apply it to the Hénon family

Ha,b : R2 → R2 (1.1)
(x, y) �→ (a − x2 + by, x)

Belief in the existence of homoclinic tangencies in the Hénon family is easily obtained
by numerical experiments. For example, the plots in Figure 1.1, suggest the existence
of tangencies for parameter values close to a = 1.4, b = 0.3 and a = 1.3, b = −0.3. Our
motivation for this work is to develop a general computationally inexpensive method
that provides a mathematically rigorous verification of this numerically induced spec-
ulation. In fact, using this technique we prove the following two results.
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Fig. 1.1. Left: a = 1.4, b = 0.3; Right: a = 1.3, b = −0.3
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Theorem 1.1. Fix any b0 sufficiently close to 0.3. Then there exists

a ∈ [1.392419807915, 1.392419807931]

such that the one-parameter family Ha,b0 has a generic homoclinic tangency with
respect to the saddle fixed point on the first quadrant.

Theorem 1.2. Fix any b0 sufficiently close to −0.3. Then there exists

a ∈ [1.314527109319, 1.314527109334]

such that the one-parameter family Ha,b0 has a generic homoclinic tangency with
respect to the saddle fixed point on the third quadrant.

Here we say that a tangency in a one-parameter family is generic if the intersec-
tion of unstable and stable manifolds are quadratic, and the intersection is unfolded
generically in the family (see Section 2 for the precise definition).

Similar results can also be attained by a complex analytic method of Fornæss
and Gavosto [4, 5]. Compared to their method, which depends on the analyticity of
maps, our method is rather geometric and topological, and is designed so that it can
be applied to a wider class of maps. Essentially, we require a continuous family of
C2 diffeomorphisms for which we can compute the image of the maps using interval
arithmetic. We present a brief overview of our approach; a more detailed description
is provided in the following sections.

The essential difficulty of a computer assisted proof in dynamics is that the dy-
namical system the computer is capable of representing and evaluating is at best a
small perturbation of the system of interest. However, the small perturbations can
induce bifurcations which create or destroy the dynamical structure of interest. The
Conley index [6, 10, 11] is a powerful tool for this type of problem precisely because it
remains constant under perturbations. It is an algebraic topological quantity which
can be used to prove the existence of particular dynamical structures including con-
necting orbits. Using recently developed computational topology tools [8] it is possible
to compute the index from the numerically generated data with the guarantee that
the index is valid for the original system of interest.

To be more precise in our discussion consider f : X → X a continuous map on a
locally compact metric space X . We use the homological Conley index with integer
coefficients defined for an isolated invariant set S of f , and denote it by Con∗(S, f)
or simply by Con∗(S). Recall that Con∗(S) is the shift equivalence class of the pair
of a graded module CH∗(S) and an endomorphism χ∗(S) on CH∗(S). (See [6, 8] for
the concept of shift equivalence and the definition of the Conley index for maps.) By
an abuse of notation we write the shift equivalent class [(CH∗(S), χ∗(S))] simply as
(CH∗(S), χ∗(S)).

We say an orbit σ : Z → X , f(σ(k)) = σ(k + 1) for all k, is a connecting orbit
from S1 to S2 if its α-limit set is contained in S1 and its ω-limit set is contained in
S2. The maximal invariant set of N ⊂ X will be denoted by Inv(N).

The following theorem which is proven in Section 3 lies at the heart of our algebraic
machinery to find connecting orbits.

Theorem 1.3. Let N1, N2 and N be isolating neighborhoods and assume N is
the disjoint union of N1 and N2. If f(N2) ∩ N1 = ∅ and

Con∗(Inv(N)) � Con∗(Inv(N1)) ⊕ Con∗(Inv(N2))

as shift equivalence classes, then there exists a connecting orbit from Inv(N1) to
Inv(N2).
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Consider a continuous one-parameter family of C2 diffeomorphisms fλ : X → X
where the parameter λ ∈ R and assume that f0 has a homoclinic tangency. Generically
one expects that for λ 	= 0, fλ will not posses a homoclinic tangency. Since the Conley
index is robust with respect to perturbations there is no hope that an existence proof
can be obtained by a direct application of the index. Thus, we need to recast the
problem in such a way that generic homoclinic tangencies become robust isolated
objects.

To obtain the isolation observe that at a homoclinic tangency the stable and
unstable manifolds share a tangent vector. Let Pfλ : PX → PX be the induced map
on the projective bundle of X . Then a homoclinic tangency of f0 corresponds to a
connecting orbit of Pf0.

The robustness can be obtained by considering the entire family of maps simul-
taneously. To do this define

F : X × R → X × R (1.2)
(x, λ) �→ (fλ(x), λ)

One now expects that if F̄ : X × R → X × R, of the form F̄ (x, λ) = (f̄λ(x), λ),
is induced by a perturbation of f , then there exists λ0 ≈ 0 such that f̄λ0 posses a
homoclinic orbit.

With this in mind one is tempted to apply Theorem 1.3 by restricting F to Λ
a compact interval containing 0 and computing the index of PF . Unfortunately, for
technical reasons explained in Section 3 this does not work. Instead we compute using
PF ′ where F ′X ×R → X ×R represents a perturbation of F with the property that
F = F ′ |X×Λ. Thus a heteroclinic tangency for F ′ is equivalent to a heteroclinic
tangency for F and hence fλ for some λ ∈ Λ.

To check that the heteroclinic tangency is indeed quadratic it is sufficient to show
that the heteroclinic orbit does not define a connecting orbit for PPf : PPX → PPX
the induced map on the projective bundle of PX .

The details concerning the induced dynamics on the projective bundles is de-
scribed in Section 2. The Conley index tools are described in Section 3. Finally in
Section 4 we indicate how these techniques are implemented in the context of the
Hénon family. All the source files used in the computation can be downloaded from
http://www.math.kyoto-u.ac.jp/~arai. To run the computation, one needs soft-
ware packages GAIO [2, 3] and Computational Homology Programs (CHomP, [14]).

2. Tangencies and connecting orbits. Let f be a diffeomorphism on a man-
ifold X . We denote the tangent bundle of X by TX and the differential of f by Tf ,
as usual.

From the dynamical system f : X → X , we derive a new dynamical system
Pf : PX → PX which is defined as follows. The space PX is the projective bundle
associated to the tangent bundle of X , that is, the fiber bundle on X whose fiber over
x ∈ X is the projective space of TxX . Namely,

PX =
∐
x∈X

PxX :=
∐
x∈X

{one-dimensional subspace of TxX}.

Define Pf to be the map induced from Tf on PX , namely, Pf([v]) := [Tf(v)] where
0 	= v ∈ TX and [v] is the subspace spanned by v. Identifying X with the image of
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the zero section of TX , we have the following commutative diagram:

TX \ X
Tf−−−−→ TX \ X

π

⏐⏐� ⏐⏐�π

PX
Pf−−−−→ PX

π′
⏐⏐� ⏐⏐�π′

X
f−−−−→ X.

Let p ∈ X be a hyperbolic fixed point of f and TpX = Ẽs
p ⊕ Ẽu

p the corresponding
splitting of the tangent space. We denote the stable and unstable manifolds of p by
W s(p) and Wu(p), respectively.

Define Es
p := π(Ẽs

p \ {0}) and Eu
p := π(Ẽu

p \ {0}). The spaces Es
p and Eu

p are
isolated invariant sets with respect to Pf : PX → PX .

Theorem 2.1 (Proposition 5.3 of [1]). Let p, q be hyperbolic fixed points of f ,
and assume that dim Wu

f (p) + dim W s
f (q) ≤ n. If there exists a connecting orbit from

Eu
p to Es

q under Pf , then Wu
f (p) and W s

f (q) have a non-transverse intersection.
Note that if p = q, the case of a homoclinic orbit, dimWu

f (p) + dim W s
f (p) = n

always holds. Therefore, our problem of finding homoclinic tangencies is now trans-
lated to that of finding connecting orbits from Eu(p) to Es(p) with respect to Pf :
PX → PX .

Next, we discuss genericity of tangencies. The definition of genericity is taken
from [9]. It is a generalization of the generic (or non-degenerate) tangencies for surface
diffeomorphism (see [4, 5, 12, 17]).

Let {fλ}λ∈Λ be a one-parameter family of C2 diffeomorphism depending smoothly
on the parameter λ ∈ Λ ⊂ R. For simplicity, we consider the homoclinic tangency
of a family of hyperbolic fixed points p(λ) of fλ. The case for a hyperbolic periodic
point is quite similar. Assume that p(λ0) has a homoclinic tangency at x ∈ M for
λ0 ∈ int Λ. For simplicity, we assume that λ0 = 0. We say that x is a 1-tangential
quadratic homoclinic tangency if the tangent spaces of Wu

f0
(p(0)) and W s

f0
(p(0)) at x

has a common subspace of dimension one and the intersection of these manifolds at
x is quadratic along this common 1-dimensional subspace. Now we define

Wu
Λ =

⋃
λ∈Λ

Wu
fλ

(p(λ)), Ws
Λ =

⋃
λ∈Λ

W s
fλ

(p(λ)).

These are smooth submanifolds of X × Λ (see [9]) and since we assume that x is a
homoclinic tangency for f0, they have a intersection at (x, 0).

Definition 2.2. We say that {fλ} has a generic homoclinic tangency at x if x is
1-tangential quadratic tangency, and Wu

Λ and Ws
Λ are transversal in X ×Λ at (x, 0).

We then consider the projection (π′, id) : PX × Λ → X × Λ and the lifting of a
generic homoclinic tangency. Let

PF : (x, λ) �→ (Pfλ(x), λ) : PX × Λ → PX × Λ.

Then it is easy to see that the sets Eu
Λ :=

⋃
λ∈Λ Eu

p(λ) and Es
Λ :=

⋃
λ∈Λ Es

p(λ) are
normally hyperbolic invariant manifolds with respect to PF and we have

Wu
PF (Eu

Λ) =
⋃
λ∈Λ

Wu
Pfλ

(Eu
p(λ)), W s

PF (Es
Λ) =

⋃
λ∈Λ

W s
Pfλ

(Es
p(λ)).
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In this setting, the genericity of a tangency is expressed as follows.
Theorem 2.3. Let fλ be a one-parameter family of diffeomorphisms with hyper-

bolic fixed point p(λ) and assume f0 has a homoclinic tangency with respect to p(0).
If the corresponding intersection of Wu

PF (Eu
Λ) and W s

PF (Es
Λ) is transversal in PX×Λ,

then the tangency is generic.
Proof. We denote the unstable and stable dimension of p(λ) by k and �, respec-

tively. Then Eu
p(λ) and Es

p(λ) are normally hyperbolic manifold of dimension k − 1
and � − 1. Since Eu

p(λ) is contracting under Pfλ|Pp(λ)X , its unstable dimension is
k and therefore Wu

Pfλ
(Eu

p(λ)) is k − 1 + k = 2k − 1 dimensional manifold. It fol-
lows that dimWu

PF (Eu
Λ) = 2k and by the same argument, dimW s

PF (Es
Λ) = 2�. Since

k + � = dimX and dim(PX × Λ) = 2 · dimX , this implies that the transversal
intersection of Wu

PF (Eu
Λ) and W s

PF (Es
Λ) is 0-dimensional and hence isolated.

Now we prove the theorem.
Assume that the tangency is not 1-tangential, that is, the dimension of the inter-

section of the tangent spaces of Wu
f0

(p(0)) and Wu
f0

(p(0)) at x is greater than or equal
to 2. It follows that the corresponding intersection of Wu

Pf0
(Eu

p(0)) and W s
Pf0

(Es
p(0))

must contain a copy of RP k where k ≥ 1. And therefore, the intersection of Wu
PF (Eu

Λ)
and W s

PF (Es
Λ) can not be an isolated point. This is a contradiction.

Next, assume that the tangency is not quadratic. Then we can take smooth curves
cu on Wu

f0
(p(0)) and cs on W s

f0
(p(0)) through x such that they have the same first and

second derivatives at x. These curves give rise to curves c̃u and c̃s on Wu
Pf0

(Eu
p(0)) and

W s
Pf0

(Es
p(0)) that intersect at (x, θ) where θ is the direction of the tangency. Since

the second derivatives of cu and cs are equal, c̃u and c̃s are tangent at (x, θ). This is
a contradiction.

Finally, since the tangent spaces of Wu
PF (Eu

Λ) and W s
PF (Es

Λ) span T(x,θ,0)(PX×Λ)
by assumption, it follows that the tangent spaces of Wu

Λ and Ws
Λ span T(x,0)(X ×Λ).

3. Method for verifying structurally unstable connecting orbits. In this
section, we describe an algebraic-topological method for proving the existence of con-
necting orbits, especially structurally unstable ones. We begin by proving Theo-
rem 1.3.

Proof. Let S1 := Inv(N1), S2 := Inv(N2) and S := Inv(N). Suppose there exists
no connecting orbit from S1 to S2.

Choose an arbitrary x ∈ S. Then there is a orbit σ : Z → S such that σ(0) = x.
Assume x ∈ N2. Then its forward orbit is contained in N2 since f(N2) ∩ N1 = ∅. If
its backward orbit intersects N1, then the α-limit set of σ is contained in N1 because
f(N2) ∩ N1 = ∅ and thus, it follows that σ must be a connecting orbit from S1

to S2, contradicting our assumption. Hence σ(Z) is contained in N2 and therefore,
x ∈ Inv(N2). Similarly, we have x ∈ Inv(N1) if x ∈ N1.

This means that S is the disjoint union of invariant subsets S1 and S2, and it
follows from the additivity of the Conley index (see Theorem 3.22 of [11] or Theorem
1.11 of [13], for example) that Con∗(S) is the direct sum of Con∗(S1) and Con∗(S2).
This is a contradiction.

Here we note that the Conley index is stable under small perturbations, and so
are connecting orbits that can be found by Theorem 1.3. Because, if Con∗(S, f) �

Con∗(S1, f) ⊕ Con∗(S2, f), then the same relationship holds for every g sufficiently
close to f and the corresponding continuations of S1, S2 and S. It follows, therefore,
that there also exists a connecting orbit between S1 and S2 with respect to g.
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This means that we can not directly apply Theorem 1.3 to find structurally un-
stable connecting orbits and in particular homoclinic or heteroclinic tangencies. With
this in mind, we make the following simple observation: Having an unstable connec-
tion of codimension one is a stable property under small perturbation of one-parameter
families. Thus, our goal is to apply Theorem 1.3 to a set of maps, instead of an indi-
vidual map.

Consider a continuous family of maps fλ : X → X where λ is a real parameter
in a closed interval Λ ⊂ R. Assume that there exist families of isolated invariant
sets S1(λ), S2(λ) and S(λ) continuing over Λ such that S1(λ) and S1(λ) are invariant
subsets of S(λ) for each λ.

As in the Introduction, we define a map

F : (x, λ) �→ (fλ(x), λ) : X × Λ → X × Λ.

Assume that we have isolating neighborhoods N1, N2 and N for S1 :=
⋃

λ∈Λ S1(λ),
S2 :=

⋃
λ∈Λ S2(λ) and S :=

⋃
λ∈Λ S(λ), respectively, such that N is the disjoint union

of N1 and N2.
Now we expect that the map F has a connecting orbit from S1 to S2 that is stable

under small perturbation of the family F , and hence Theorem 1.3 can be applied. But
as shown in the next example, it is often the case that the existence of connecting
orbits from S1 to S2 is still beyond the scope of Theorem 1.3.

Example 3.1. Consider a one-parameter family of diffeomorphisms fλ on R3

illustrated in Figure 3.1. Let S1(λ) = x and S2(λ) = y be the hyperbolic fixed point

λ=0

y x

λ>0λ<0
intersection

Fig. 3.1. A hetero-dimensional cycle

of unstable dimensions 1 and 2, respectively. Assume that Wu
f0

(x) intersects W s
f0

(y)
at λ = 0, and therefore there is a connecting orbit from x to y. Let

S(λ) = {x} ∪ {y} ∪ (Wu
fλ

(x) ∩ W s
fλ

(y))

and N be a sufficiently small compact neighborhood of S(0). Then N is an isolating
neighborhood of S(λ) for λ close to 0. It is clear that

Con∗(Si(λ)) ∼= Con∗(Si) ∼=
{

(Z, 1) if ∗ = i

(0, 0) if ∗ 	= i.

An index pair for S is obtained by collapsing the exit set of N . Each component of
N is collapsed to a space homotopic to S1, except for the one that contain x, which
is collapsed to a space homotopic to the bouquet of two S1, and the one that contain
y, which is collapsed to a space homotopic to S2. By computing the shift equivalence
class, we have

Con∗(S(λ)) ∼= Con∗(S) ∼=
{

(Z, 1) if ∗ = 1, 2
(0, 0) other.
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Observe that although the connecting orbit from S1(0) to S2(0) is structurally un-
stable, having such a connecting orbit is a stable property with respect to a small
perturbation of the family. However, this is an example where the converse of The-
orem 1.3 does not hold and thus we cannot detect the connecting orbit with this
theorem. The problem is that the unstable dimensions of S1 and S2 are different, and
hence, they have non-trivial Conley index only at different degrees.

Remark that this example illustrates a typical situation that occurs when we
consider the projectivization of a homoclinic tangency. Precisely, let p be a hyperbolic
saddle fixed point of a surface diffeomorphism fλ and x = Eu

p and y = Es
p. Then x

and y are hyperbolic fixed point of Pf with 1 and 2 dimensional unstable manifolds.
There always exists a connection from y = Es

p to x = Eu
p that is induced from the

action of Ppf on PpX , and there exists a connection from x to y if and only if there
exists a homoclinic tangency with respect to p.

To overcome this difficulty, we put an artificial perturbation on F that suspends
Con∗(S1). Let Λ′ be a closed subinterval of Λ such that Λ\Λ′ has two components and
suppose F (N1) ∩ N2 is included in X × Λ′. This implies that there is no connecting
orbit for λ ∈ Λ \ Λ′.

Define

F ′(x, λ) =

{
(fλ(x), λ + g(λ)) x ∈ N1

(fλ(x), λ − g(λ)) x ∈ N2

where g : Λ → R is a continuous function that is negative on the left component of
Λ \ Λ′, vanishing on Λ′ and positive on the right component of Λ \ Λ′.

After this perturbation, N1, N2 and N remain isolating neighborhoods. Define
S′

1 ,S′
2 and S′ to be the maximal invariant sets of N1, N2 and N with respect to

F ′, respectively. Then by the suspension isomorphism theorem and the homotopy
continuation property of the Conley index, we have

Con∗(S′
1, F

′) = Con∗−1(S1, F ), Con∗(S′
2, F

′) = Con∗(S2, F ).

Note that if we apply this construction to Example 3.1, S′
1 has the non-trivial

Conley index at degree 2, the same degree at which S′
2 has the non-trivial Conley

index.
Theorem 3.2. In the above setting, if

Con∗(S′, F ′) � Con∗(S′
1, F

′) ⊕ Con∗(S′
2, F

′)

then there exists λ0 ∈ Λ′ such that there is a connecting orbit from S1(λ0) to S2(λ0)
under fλ0 .

Proof. By Theorem 1.3, there exists a connection from S′
1 to S′

2 under F ′. By
our assumption, this connecting orbit must be in X ×Λ′. But F ′ and F are identical
on Λ′, hence the theorem follows.

4. Tangencies in the Hénon family. In this section, we verify the existence
of generic homoclinic tangencies in the Hénon family (1.1) by applying the ideas
developed in Sections 2 and 3. We explain the steps of the computation in the case of
Theorem 1.1, a tangency close to the classical parameter values a = 1.4 and b = 0.3.
With b fixed to 0.3, Ha,0.3 is now considered to be a one-parameter family with
parameter a. For simplicity and to maintain the notation introduced in the earlier
sections we write fa := Ha,0.3.
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We focus on the fixed point

p(a) =
(−0.7 +

√
0.49 + 4a

2
,
−0.7 +

√
0.49 + 4a

2

)

which lies in the first quadrant. By Theorem 2.1, it is sufficient to show the existence
of a connecting orbit from Eu

p(a) to Es
p(a) for some a. We conclude that the tangency is

generic by checking the transversality of Wu
PF (Eu

Λ) and W s
PF (Es

Λ) using Theorem 2.3.
First we construct isolating neighborhoods N1, N2 and N in PM × Λ = R2 ×

S1 × R, with respect to the dynamical system PF : (x, a) �→ (Pfa(x), a). This is
done using cubes, i.e. products of closed intervals, in this case, 4-dimensional cubes
since TX is homeomorphic to R4. These isolating neighborhoods are designed so that
S1 = Inv(N1) contains Eu

Λ =
⋃

Eu
p(a), S2 := Inv(N2) contains Es

Λ =
⋃

Es
p(a), and

N = N1 ∪N2 contains S1, S2 and the connecting orbit of our interest. For simplicity,
we write a slice S ∩ (PX × {a}) of S ⊂ PX × Λ as S(a), and so forth.

Next we apply the perturbation described in Section 2 to the map PF so that
the Conley index of S1 will be suspended. After perturbation, we have three isolated
invariant sets S′

1, S′
2 and S′ with respect to PF ′.

Here we compute the Conley indexes of S′
1, S′

2 and S′ and apply Theorem 3.2.
This proves the existence of a connecting orbit from S1(a) to S2(a) for some a ∈ Λ.
Then we show that S1(a) = Eu

p(a) and S2(a) = Es
p(a). It follows that the connecting

orbit we found is from Eu
p(a) to Es

p(a), which imply the existence of a tangency with
respect to fa.

Finally, we check that Wu
PF (Eu

Λ) and W s
PF (Es

Λ) are transversal, and conclude the
tangency we found is generic.

The argument above is arranged into the following steps:
Step 1. Construct an initial guess for the location of the connecting orbit.
Step 2. Refine the initial guess up to the desired precision.
Step 3. Modify the refined set to get isolating neighborhoods N1, N2 and N .
Step 4. Compute the Conley index and apply Theorem 3.2.
Step 5. Check that S1(a) = Eu

p(a) and S2(a) = Es
p(a).

Step 6. Check that Wu
PF (Eu

Λ) and W s
PF (Es

Λ) are transversal.
Before getting into the details of each step, we remark that it is numerically

expensive to apply the interval arithmetic to trigonometric and inverse trigonometric
functions. Therefore, in the following computations, we choose a piecewise linear
coordinate θ ∈ (−π, π] for PxM = RP 1 ∼= S1. This coordinate is not differentiable,
but note that the Conley index theory is still available. To deal with P (PX ×Λ), we
also take the similar piecewise linear coordinate for RP 3 in the last step.

Step 1. Basically, any method can be used for this step.
In our example, we make use of the software package GAIO in this and next steps.

Programs in GAIO are developed for global analysis of invariant objects in dynamical
systems by M. Dellnitz, O. Junge and their collaborators. See [2] and the project web
page [3]. To construct an initial guess, we simply look at Figure 1.1 and choose cubes
that seem to contain the connecting orbit from Eu

p(a) to Es
p(a) (Figure 4.1).

Step 2. Next, we refine the initial guess by applying “the subdivision algorithm”
[2] of GAIO. In an application of the subdivision algorithm, each cube is divided into
two cubes. And then we make a graph map from the multi-valued map induced
from PF using the interval arithmetic and remove the cubes which does not contain
a connecting orbit or a fixed point of the graph map. Since our computation is
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Fig. 4.1. Our initial guess for the connecting orbit. Left: the projection to the x-y-θ space;
Right: the projection to the x-y-a space.

rigorous, cubes containing a fixed point or a connecting orbit of PF definitely survive
this reduction.

After 8 applications of the subdivision and reduction procedure, we get the cubes
illustrated in Figure 4.2.
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Fig. 4.2. After 8 steps of subdivision and reduction procedure. Left: the projection to the x-y-θ
space; Right: the projection to the x-y-a space.

Cubes after further 8 applications of the procedure are illustrated in Figure 4.3.
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Fig. 4.3. After 16 steps of subdivision and reduction procedure. Left: the projection to the
x-y-θ space; Right: the projection to the x-y-a space.
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Note that the range of the parameter value a is getting smaller and smaller during
this computation. In our example, we apply this procedure 140 times. The resulting
set consists of 9029 cubes and its range of a is smaller than 10−10.

Step 3. Roughly speaking, the algorithm adds cubes to the given set of cubes
until it becomes an isolating neighborhood. This is a modification of the algorithm
proposed by Junge [7, 8].

Step 4. To construct an index pairs from the isolating neighborhoods found in
Step 3, we use the combinatorial index pair algorithm (Algorithm 10.86 of [8]). This
gives index pairs for S′

1, S′
2 and S′.

Then we apply the Computational Homology Program (CHomP, [14]) to compute
the Conley index. Application of the program shows that

Con∗(S′
1) = Con∗(S′

2) =

{
(0, 0) if ∗ 	= 2
(Z, 1) if ∗ = 2

and

Con∗(S′) =

{
(0, 0) if ∗ 	= 2
(Z59, P ) if ∗ = 2

where P is a 59 times 59 integer matrix. It can be shown that

Con2(S′) ∼=
(

Z2,

(
1 1
0 1

))
	∼=

(
Z2,

(
1 0
0 1

))
∼= Con2(S′

1) ⊕ Con2(S′
2)

and therefore, by Theorem 1.3 we conclude that there exists a connecting orbit from
S1(a) to S2(a) for some a ∈ Λ′. In this case, Λ′ = [1.392419807915, 1.392419807931].

Step 5. We have shown that there exists a parameter value a such that there
exists a connecting orbit from S1(a) to S2(a). Although Eu

p (a) ⊂ S1(a) and Es
p(a) ⊂

S2(a) follows from our construction, it is unknown that whether these set are equal
or not. To show these equality, we make use of the Hartman-Grobman linearization
theorem.

Proposition 4.1. Let the origin 0 ∈ Rn be a hyperbolic fixed point of a diffeo-
morphism f on Rn and B a ball of radius r and centered at 0. Choose 0 < μ < 1
and ε > 0 so that for each eigenvalue λ of Tf(0) we have |λ| < μ or |λ−1| < μ,
and ε + μ < 1 and ε < m(Tf(0)) hold. Here m denotes the minimum norm. If the
Lipschitz constant of f−Tf(0) restricted to B is less than ε/2, then Inv(B, f) = {0}.

Proof. Let g := f − Tf(0). Define g′ by

g′(x) =

{
g(x) if x ∈ B

g(r · x/‖x‖) if x 	∈ B.

Then the Lipschitz constant of g′ : Rn → Rn is less than ε. Apply the Hartman-
Grobman theorem, Theorem 5.7.1 of [15] (Note that Theorem 5.7.1 of [15] gives the
estimate on the size of ε).

Since we do not know the exact value of a at which the tangency occurs, we need
to show that S1(a) = Eu

p(a) and S2(a) = Es
p(a) for all a ∈ Λ′. Note that since we are

using the interval arithmetic, it suffice to check these equalities for a finite number of
intervals that cover Λ′.
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Using this proposition, we show that π′(S1(a)) and π′(S2(a)) coincide with the
fixed point p(a). Then it is easy to check S1(a) = Eu

p(a) and S2(a) = Es
p(a) because

the dynamics on the fiber Pp(a)R
2 is induced from the linear map Tp(a)fa. In prac-

tice, we first compute ε of the proposition using interval arithmetic. Then check if
the condition of the proposition is satisfied with a ball B containing π′(S1(a)) or
π′(S2(a)). In our example of the Hénon map, we have (fa − Tfa(0))(u, v) = (−u2, 0)
by the coordinate change (x, y) = (u + p(a), v + p(a)). We then can easily check the
condition of the proposition. In general, this check may fail. In that case we apply
the subdivision algorithm to S1(a) and S2(a) to make these sets smaller, and again
check if the condition of the proposition holds.

Step 6. Recall that Wu
PF (Eu

Λ) and W s
PF (Es

Λ) are 2-dimensional manifolds and we
need to check that these manifolds are transversal in R2 × S1 × R.

For this purpose, we apply the procedure of taking projective bundle once again.
That is, we construct PPF : P (PX×Λ) → P (PX×Λ) from PF : PX×Λ → PX×Λ.
Recall that Eu

Λ and Eu
Λ are normally hyperbolic invariant manifolds with respect to

PF . Let

EuEu
Λ := {v ∈ P (PX × Λ) | v ∈ Px(PX × Λ) where x ∈ Eu

Λ, v ∈ Eu
x},

EsEs
Λ := {v ∈ P (PX × Λ) | v ∈ Px(PX × Λ) where x ∈ Es

Λ, v ∈ Es
x}.

These are the set of all unstable and stable vectors based on a point in Eu
Λ and Es

Λ,
respectively. Then it follows that if Wu

PF (Eu
Λ) and W s

PF (Es
Λ) are not transversal and

hence share a common subspace at the intersection, there must be a connecting orbit
from EuEu

Λ to EsEs
Λ with respect to PPF .

Therefore, it suffice to show the non-existence of such a connecting orbit. This
also can be done with interval arithmetics. We subdivide P (PX × Λ) into small
cubes and make rigorous coverings (neighborhoods) of EuEu

Λ and EsEs
Λ that consists

of cubes. In the case of Hénon map, we can exactly compute EuEu
Λ and EsEs

Λ by
hands. In general, we need the help of rigorous interval arithmetics to compute them.
Denote these sets of cubes by U and S, respectively.

By using interval arithmetics, we apply PPF to U and add the image cubes to
U . Then we apply PPF to U again and repeat this procedure while the number of
cubes in U is increasing. Since the number of the cubes in total space is finite, this
procedure stops at some point.

Assume the number of cubes in U is the same after one application of PPF . Then
it follows that the union of cubes in U is a rigorous covering of the unstable set of
EuEu

Λ. Then we check if U ∩ S = ∅. If this holds, then there can not be a connecting
orbit from EuEu

Λ to EsEs
Λ and this is what we wanted to show. If this is not the case,

we refine the decomposition of P (PX × Λ) by subdividing all cubes in it and repeat
the whole procedure again.

Remark that all the discussion in this section is valid for any b sufficiently close
to 0.3. This completes the algorithm to prove Theorem 1.1.

The algorithm for Theorem 1.2 is the same, but the computational cost is different
as follows.

a = 1.4, b = 0.3 a = 1.3, b = −0.3
Step 2 22.2 min 1.9 min
Step 3 153.9 min 22.5 min
Step 4 26.0 min 50.8 min
Step 6 60.8 min 24.1 min
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All the computations are done on a PowerMac G5 (2GHz). Since the orbit of
tangency is simpler and hence the number of cubes in the isolating neighborhoods is
smaller, the computation for the case a = 1.3, b = −0.3 is faster. The only exception
is Step 4, the computation of homology. The reason for this is the strong expansion
rate of the map, which makes the number of the cubes in the image of the isolating
neighborhoods significantly large.
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