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ZIN ARAI

Abstract. We prove John Hubbard’s conjecture on the topological
complexity of the hyperbolic horseshoe locus of the complex Hénon
map. In fact, we show that there exist several non-trivial loops in the
locus which generate infinitely many mutually different monodromies.
Furthermore, we prove that the dynamics of the real Hénon map is
completely determined by the monodromy of the complex Hénon map,
providing the parameter is contained in the hyperbolic horseshoe locus
of the complex Hénon map.

1. Introduction

One of the motivations of this work is to give an answer to the conjec-
ture of John Hubbard on the topology of hyperbolic horseshoe locus of the
complex Hénon map

Ha,c : C
2 → C

2 :
(
x
y

)
�→

(
x2 + c− ay

x

)
.

Here a and c are complex parameters.
Below we describe the conjecture following a formulation given by Bedford

and Smillie [5].
Let us define

KC
a,c := {p ∈ C

2 : {Hn
a,c(p)}n∈Z is bounded}, KR

a,c := KC
a,c ∩ R

2.

The set KC
a,c is compact and invariant with respect to Ha,c. When the

parameters a and c are both real, the real plane R
2 ⊂ C

2 is invariant and
hence so is KR

a,c. In this case, we call Ha,c|R2 : R
2 → R

2 the real Hénon
map.

Our primary interest is on the structure of the parameter space, especially
on the topology of the set of parameter values on which complex and/or real
Hénon maps become a uniformly hyperbolic horseshoe. More precisely, we
study the following sets:

HC := {(a, c) ∈ C
2 : Ha,c|KC

a,c is a hyperbolic full horseshoe},
HR := {(a, c) ∈ R

2 : Ha,c|KR
a,c is a hyperbolic full horseshoe}.
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2 Z. ARAI

Here we mean by a hyperbolic full horseshoe an uniformly hyperbolic in-
variant set which is topologically conjugate to the full shift map σ defined
on Σ2 = {0, 1}Z, the space of bi-infinite sequences of two symbols.

A classical result of Devaney and Nitecki [12] claims that if (a, c) is in

DN := {(a, c) ∈ R
2 : c < −(5 + 2

√
5) (|a| + 1)2/4, a �= 0}

then KR
a,c is a hyperbolic full horseshoe. Thus DN ⊂ HR holds. They also

showed that the set

EMP := {(a, c) ∈ R
2 : c > (a+ 1)2/4}

consists of parameter values such that KR
a,c = ∅. Later, Hubbard and

Oberste-Vorth investigated the Hénon map form the complex dynamical
point of view, and improved the hyperbolicity criterion by showing that

HOV := {(a, c) ∈ C
2 : |c| > 2(|a| + 1)2, a �= 0}

is contained in HC. Remark that EMP∩HOV is non-empty; in this parameter
region, although KC

a,c is a full horseshoe, it does not intersect with R
2.
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Figure 1. The shaded regions consist of hyperbolic (not
necessarily full horseshoe) parameters of the real Hénon map.

Figure 1 illustrates a subset of parameter values on which the chain re-
current set of the real Hénon map is uniformly hyperbolic (not necessarily a
full horseshoe) [1]. Three solid lines are parts of the boundaries of DN, HOV
and EMP, from left to right. On the biggest island to the left, the chain
recurrent set coincides with KR

a,c and is conjugate to the full shift. Hence
the island is contained in HR.

We then consider the relation between HR and HC. By the result of
Bedford, Lyubich and Smillie [3, Theorem 10.1], we know HR ⊂ HC ∩ R

2.
It is then natural to ask what happens in (HC ∩ R

2) \ HR. To be specific,
we divide HC ∩ R

2 into three mutually disjoint sets.
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Definition 1 (Bedford and Smillie [5]). We call (a, c) ∈ HC∩R
2 is of type-1

if (a, c) ∈ HR, and of type-2 if KR
a,c = ∅. Otherwise, it is of type-3.

Since DN ⊂ HR, the set of type-1 parameter values is non-empty. The set
of type-2 parameter values is also non-empty since it contains EMP ∩ HOV.
However, the existence of a type-3 parameter value was open.

Conjecture 1 (Hubbard). There exists a parameter value of type-3.

As we will see later, this conjecture turned to be true.
Besides the existence, Hubbard also conjectured that there are infinitely

many classes of type-3 parameter values corresponding to mutually different
real dynamics. This stronger conjecture is, to be precise, given in terms of
the monodromy representation of the fundamental group of the hyperbolic
horseshoe locus as below.

Denote by HC
0 the component of HC that contains HOV. Let us fix a

basepoint (a0, c0) ∈ DN and a topological conjugacy h0 : KC
a0,c0 → Σ2.

Given a loop γ : [0, 1] → HC
0 based at (a0, c0), we construct a continuous

family of conjugacies hγ
t : KC

γ(t) → Σ2 along γ such that hγ
0 = h0 (see §4 for

the details). This is possible because KC
a,c is uniformly hyperbolic along γ.

When no confusion may result, we suppress γ and write hγ
t as ht. Then we

define
ρ(γ) := h1 ◦ (h0)−1 : Σ2 → Σ2.

It is easy to see that ρ defines a group homomorphism

ρ : π1(HC
0 , (a0, c0)) → Aut(Σ2)

where Aut(Σ2) is the group of the automorphisms of Σ2. Recall that an
automorphism of Σ2 is a homeomorphism of Σ2 which commutes with the
shift map σ [18]. We call ρ the monodromy homomorphism and denote its
image by Γ.

For example, let γ∅ be a loop in HC
0 based at (a0, c0) which is homotopic

to the generator of π1(HOV). It is then shown [5] that ρ(γ∅) is an involution
which interchanges the symbols 0 and 1. Namely, (ρ(γ∅)(s))i = 1− si for all
s = (si) ∈ {0, 1}Z.

The monodromy homomorphism was originally defined for polynomial
maps of one complex variable. In this case, since the map does not have the
inverse, the target space of the monodromy homomorphism is the automor-
phism group of one-sided shift space of d-symbols, where d is the degree of
the polynomial. When d = 2, this group is isomorphic to Z2 and the mon-
odromy homomorphism is shown to be surjective since it maps the generator
of π1(C\{the Mandelbrot set}) to 1 ∈ Z2. The monodromy homomorphism
is also surjective even when d > 2, although the proof is much harder than
the case d = 2 because the automorphism group becomes much more com-
plicated [6].

Hubbard conjectured that the surjectivity also holds in the case of the
complex Hénon map, with the only exception being σ.

Conjecture 2 (Hubbard). The image Γ of the monodromy homomorphism
and the shift map σ generate Aut(Σ2).
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The structure of Aut(Σ2) is quite complicated [7]: it contains every finite
group; furthermore, it contains the direct sum of any countable collection of
finite groups; and it also contains the direct sum of countably many copies of
Z. Therefore, the conjecture implies, provided it is true, that the topological
structure of HC is very rich, in contrast to the one-dimensional case where
the fundamental group of C \ {the Mandelbrot set} is simply Z.

Let us state the main results of the paper now.
First, we claim that Conjecture 1 is true.

Theorem 1. There exist parameter values of type-3. In fact, if (a, c) is in
one of the following sets:

Ip := {1} × [−5.46875,−5.3125], Iq := {0.25} × [−2.296875,−2.21875],

Ir := {−1} × [−5.671875,−4.4375], Is := {−0.375} × [−2.15625,−1.8125]

then (a, c) is of type 3.

Toward Conjecture 2, we obtain the following result.

Theorem 2. The order of the group Γ is infinite. In particular, it contains
an element of infinite order.

Apart form the theoretical interest, the monodromy theory of complex
Hénon map can contribute to the understanding of the real Hénon map.

Let (a, c) ∈ HC ∩ R
2. If (a, c) is of type-1 or 2, then by definition KR

a,c is
a full horseshoe, or empty. Suppose (a, c) is of type-3. We then ask what
is KR

a,c in this case. By definition, KR
a,c is a proper subset of KC

a,c
∼= Σ2.

The uniform hyperbolicity implies the existence of a Markov partition for
KR

a,c, and therefore, KR
a,c must be topologically conjugate to some subshift

of finite type. The following theorem reveals that KR
a,c is actually a subshift

of Σ2 which is realized as the fixed point set of the monodromy of a loop
passing through (a, c).

Theorem 3. For any (a, c) ∈ HC
0 ∩ R

2, there exists a loop γ : [0, 1] → HC
0

with γ(1/2) = (a, c) such that Ha,c : KR
a,c → KR

a,c is topologically conjugate
to

σ|Fix(ρ(γ)) : Fix(ρ(γ)) → Fix(ρ(γ)).

In fact, it suffices to set γ := ᾱ−1 · α, where α is an arbitrary path in HC
0

connecting a point in DN to (a, c). Here ᾱ denotes the complex conjugate
of α. The conjugacy is given by the restriction of h1/2 to KR

a,c. Namely, the
following diagram commutes;

KR
a,c

Ha,c−−−−→ KR
a,c

h1/2|KR
a,c

⏐⏐�∼= ∼=
⏐⏐�h1/2|KR

a,c

Fix(ρ(γ)) σ−−−−→ Fix(ρ(γ)).
As an application of Theorem 3, we obtain the following.

Theorem 4. Let (a, c) ∈ Ip. The real Hénon map Ha,c : KR
a,c → KR

a,c

is topologically conjugate to the subshift of Σ2 with two forbidden blocks
0010100 and 0011100. Similarly, KR

a,c is conjugate to the subshift of Σ2

defined by the following forbidden blocks: 10100 and 11100 for (a, c) ∈ Iq;
10010 and 10110 for (a, c) ∈ Ir; 0010 and 0110 for (a, c) ∈ Is.
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Notice that Ip contains (a, c) = (1,−5.4), the parameter studied by Davis,
MacKay and Sannami [10]. The subshift for (a, c) ∈ Ip given in Theorem 4 is
equivalent to that observed by them. Thus, we can say that their observation
is now rigorously verified. We also remark that this theorem is closely related
to the so-called “pruning front” theory [9, 10]. Theorem 3 implies that
“primary pruned regions”, or, “missing blocks” of KR

a,c is nothing else but
the region where the generating partition are interchanged along γ.

The structure of the paper is as follows. We prove the theorems in Sec-
tion 2, leaving computational algorithms to Section 3 and 4. In Section 3,
we summarize the algorithm for proving uniform hyperbolicity developed by
the author [1]. Section 4 is devoted to an algorithm for computing the mon-
odromy homomorphism. In the appendix, we discuss a method for rigorously
counting the number of periodic points, which gives rise to an alternative
proof of Theorem 1. Programs for computer assisted proofs are available at
the author’s web page (http://www.math.kyoto-u.ac.jp/~arai/).

The author is grateful, first of all, to John Hubbard, the originator of the
problem. He also would like to thank E. Bedford, P. Cvitanović, S. Hruska,
H. Kokubu, A. Sannami, J. Smillie, and S. Ushiki for many valuable sug-
gestions.

2. Proofs

We first prove Theorem 3. We note that this is similar to Theorem 5.2 of
[5], but we give it in order to have the precise formulation that we need.

The key is the symmetry of the Hénon map with respect to the complex
conjugation [5], by which we mean the equation

φ ◦Ha,c = Hā,c̄ ◦ φ
where φ is the complex conjugation that maps z = (x, y) to z̄ = (x̄, ȳ).

Proof of Theorem 3. Let γ = ᾱ−1 · α be a loop in HC
0 where α is a path

connecting a point in DN to (a, c), and let γ̄ := φ ◦ γ be the complex
conjugate of it. Note that by construction, we have γ̄ = γ−1.

Take an arbitrary point z ∈ KC
a,c and define

sz := h1/2(z) ∈ Σ2.

To prove the theorem, it suffices to show that ρ(γ)(sz) = sz if and only if
z ∈ R

2.
We denote the continuation of z along γ by z(γ, t), where z(γ, 1/2) = z.

Remark that by construction,

z(γ, t) = (ht)−1(sz) ∈ C
2.

By the continuity of hyperbolic invariant sets,

z(γ, ·) : [0, 1] → C
2 : t �→ z(γ, t)

defines a continuous curve, which is a closed loop if z(γ, 0) = z(γ, 1).
From the symmetry of the Hénon map with respect to the complex con-

jugation it follows that
z(γ, t) = z̄(γ̄, t).
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Here z̄(γ̄, t) is the continuation of z̄ along γ̄. Since γ̄ = γ−1, we have
z̄(γ̄, t) = z̄(γ, 1 − t). Therefore,

ρ(γ)(sz) = h1((h0)−1(sz)) = h1(z(γ, 0)) = h1(z(γ, 0))

= h1(z̄(γ̄, 0)) = h1(z̄(γ, 1)) = h1((h1)−1(sz̄)) = sz̄.

The third equality holds because KC

γ(0) ⊂ R
2 and hence z(γ, 0) = z(γ, 0).

Thus, we know that ρ(γ)(sz) = sz if and only if sz = sz̄. Since the map
h1/2 is a bijection between KC

a,c and Σ2, it follows that sz = sz̄ if and only
if z = z̄. This proves the theorem. �
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Figure 2. The shaded region is contained in HC ∩ {a = 1}.

Now we discuss Theorem 1. We begin by defining Ip, Iq, Ir and Is. Let

Lp := {1} × {C \ white regions in Figure 2},
Lq := {0.25} × {C \ white regions in Figure 3},
Lr := {−1} × {C \ white regions in Figure 4},
Ls := {−0.375} × {C \ white regions in Figure 5}

and L := Lp ∪Lq ∪Lr ∪Ls ⊂ C
2. To be precise, these regions are defined by

a finite number of closed rectangles. The complete list of these rectangles is
available at the author’s web page.

Lemma 5. If (a, c) ∈ L then Ha,c is uniformly hyperbolic on its chain
recurrent set R(Ha,c).

The proof of this lemma is computer assisted. We leave it to §3.
Recall that the hyperbolicity of the chain recurrent set implies the R-

structural stability [22, Corollary 8.24]. Therefore, it follows from Lemma 5
that no bifurcation occurs in R(Ha,c) as long as (a, c) ∈ L. Since L and DN
have non-empty intersection and KC

a,c = KR
a,c = R(Ha,c) is a hyperbolic full
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Figure 3. The shaded region is contained in HC ∩ {a = 0.25}.
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Figure 4. The shaded region is contained in HC ∩ {a = −1}.

horseshoe on DN, we know that R(Ha,c) is also a hyperbolic full horseshoe
for all (a, c) ∈ L. However, this observation is not sufficient for our purpose
because R(Ha,c) and KC

a,c do not necessarily coincide. To conclude the
hyperbolicity of KC

a,c, we need to show that these sets are equal in the
horseshoe locus, as follows.

Corollary 6. If (a, c) ∈ L then Ha,c|KC
a,c is a hyperbolic full horseshoe, that

is, L ⊂ HC.
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Figure 5. The shaded region is contained in HC ∩ {a = −0.375}.

Proof of Corollary 6. Let

K+
a,c :={p ∈ C

2 : {Hn
a,c(p)}n≥0 is bounded},

K−
a,c :={p ∈ C

2 : {Hn
a,c(p)}n≤0 is bounded}

and J±
a,c := ∂K±

a,c. Define Ja,c = J+
a,c ∩ J−

a,c. Then KC
a,c = K+

a,c ∩ K−
a,c

and we have Ja,c ⊂ R(Ha,c) ⊂ KC
a,c [20, Proposition 9.2.6, Theorem 9.2.7].

Suppose (a, c) ∈ L. Since R(Ha,c) is a full horseshoe, all periodic points of
Ha,c is contained in R(Ha,c) and therefore they are of saddle type. Thus
there exists no attracting periodic orbit. Furthermore, Ja,c is uniformly
hyperbolic because it is a closed sub-invariant set of R(Ha,c). It follows
that intK+ = ∅ [4, Theorem 5.9]. Since |a| ≤ 1, we also have intK− = ∅
[4, Lemma 5.5]. As a consequence, J+

a,c = K+
a,c and J−

a,c = K−
a,c, and hence

Ja,c = R(Ha,c) = KC
a,c. Therefore, Lemma 5 implies this corollary. �

The set Lp ∩ R
2 have three components: two unbounded intervals, and

one bounded interval connecting two white regions in Figure 2. We define
Ip to be this bounded one. Similarly, Iq, Ir and Is are defined to be the
bounded intervals contained in Lq ∩ R

2, Lq ∩ R
2 and Ls ∩ R

2, respectively.
From Corollary 6 it follows that Ip, Iq, Is and Ir are contained in HC

0 ∩ R
2.

To complete the proof of Theorem 1, we need to show that these intervals
are of type-3.

A simple and direct way for proving this is to show that the number of
periodic points contained in KR

a,c is non-zero and different from that of a full
horseshoe. Rigorous interval arithmetic and the Conley index theory can be
applied for this purpose. We discuss this method in the appendix.

Another way is to make use of Theorem 3. Since we have already shown
that L ⊂ HC

0 , we can consider the monodromy of loops in L, from which we
derive the information of KR

a,c.
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Figure 6. The loop βp : [0, 1] → Lp based at (a, c) = (1,−5.875).

Let βp : [0, 1] → Lp be a loop that turns around the smaller white island
of Figure 2 as illustrated in Figure 6. We require that βp(1/2) ∈ Ip, and
that βp be symmetric, that is, β̄p = β−1

p . Then we define a loop γp : [0, 1] →
Lp ∪ HOV based at (1,−10) ∈ DN by setting

γp := ᾱ−1 · βp · α
where α : [0, 1] → HOV ∪ Lp is a path from (1,−10) to the basepoint of βp.
Choose the parametrization of γp so that γp(1/2) ∈ Ip and γ̄p = γ−1

p hold.
Similarly we define loops γq, γr and γs based at (1,−10) turning around the
smaller islands in Lq, Lr and Ls, respectively.

Proposition 7. The automorphism ρ(γp) interchanges the words 0010100
and 0011100 contained in s = (si)i∈Z ∈ Σ2. Namely,

(ρ(γp)(s))i =

⎧⎪⎨
⎪⎩

0 if si−3 · · · si · · · si+3 = 0011100
1 if si−3 · · · si · · · si+3 = 0010100
si otherwise.

Similarly, ρ(γq) interchanges 10100 and 11100, ρ(γr) interchanges 10010
and 10110, and ρ(γs) interchanges 0010 and 0110.

The proof of Proposition 7 is also computer assisted. An algorithm for
this will be discussed in §4.

Now we are prepared to prove Theorem 1.

Proof of Theorem 1. Since Fix(ρ(γp)) is a non-empty proper subset of Σ2,
Theorem 3 implies that γp(1/2) ∈ Ip is of type-3. By considering loops
homotopic to γp, we can show that all (a, c) ∈ Ip are also of type-3. Proofs
for other intervals are the same. �

Theorem 2 immediately follows from the following proposition.

Proposition 8. The order of ψ = ρ(γ∅) · ρ(γs) is infinite.

The proof below is due to G. A. Hedlund [14, Theorem 20.1].
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Proof. For non-negative integer p, we define elements of Σ2 named x(2p) and
x(2p+1) by

x(2p) = · · · 010101010110110(10)p.11111 · · · ,
x(2p+1) = · · · 010101010110110(10)p1.00000 · · · .

We then look at the orbit of x = x(0) under the map ψ. A simple calculation
shows that

x = · · · 010101010110110.11111 · · · = x(0),

ψ(x) = · · · 101010101101101.00000 · · · = x(1),

ψ2(x) = · · · 010101011011010.11111 · · · = x(2),

ψ3(x) = · · · 101010110110101.00000 · · · = x(3).

By induction, it follows that ψn(x(0)) = x(n). Since x(n) �= x(m) if n �= m,
this implies that the order of ψ is infinite. �

Theorem 4 is a direct consequence of Theorem 3 and Proposition 7.

3. Hyperbolicity

We recall an algorithm for proving the uniform hyperbolicity of chain
recurrent sets developed by the author [1]. We also refer the reader to the
work of Suzanne Lynch Hruska [15, 16] for another algorithm.

Let f be a diffeomorphism on a manifold M and Λ a compact invariant
set of f . We denote by TΛ the restriction of the tangent bundle TM to Λ.

Definition 2. We say that f is uniformly hyperbolic on Λ if TΛ splits into
a direct sum TΛ = Es ⊕Eu of two Tf -invariant subbundles and there exist
constants c > 0 and 0 < λ < 1 such that ‖Tfn|Es‖ < cλn and ‖Tf−n|Eu‖ <
cλn hold for all n ≥ 0. Here ‖ · ‖ denotes a metric on M .

Proving the uniform hyperbolicity of f according to this usual definition
is quite difficult, in general. Because we must control two parameters c and
λ at the same time, and further, we also need to constant a metric on M
adapted to the hyperbolic splitting.

To avoid this difficulty, we introduce a weaker notion of hyperbolicity
called “quasi-hyperbolicity”. We consider Tf : TΛ → TΛ, the restriction of
Tf to TΛ, as a dynamical system. An orbit of Tf is said to be trivial if it
is contained in the image of the zero section.

Definition 3. We say that f is quasi-hyperbolic on Λ if Tf : TΛ → TΛ has
no non-trivial bounded orbit.

It is easy to see that hyperbolicity implies quasi-hyperbolicity. The con-
verse is not true in general. However, when f |Λ is chain recurrent, these two
notions of hyperbolicity are equivalent.

Theorem 9 ([8, 21]). Assume that f |Λ is chain recurrent, that is, R(f |Λ) =
Λ. Then f is uniformly hyperbolic on Λ if and only if f is quasi-hyperbolic
on it.
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The definition of quasi-hyperbolicity can be rephrased in terms of isolat-
ing neighborhoods as follows. Recall that a compact set N is an isolating
neighborhood with respect to f if the maximal invariant set

Inv(N, f) := {x ∈ N | fn(x) ∈ N for all n ∈ Z}
is contained in intN , the interior of N . An invariant set S of f is said to be
isolated if there is an isolating neighborhood N such that Inv(N, f) = S.

Note that the linearity of Tf in fibers of TM implies that if there exists
a non-trivial bounded orbit of Tf : TΛ → TΛ, then any neighborhood
of the image of the zero-section must contain a non-trivial bounded orbit.
Therefore, the definition of quasi-hyperbolicity is equivalent to saying that
the image of the zero section of TΛ is an isolated invariant set with respect
to Tf : TΛ → TΛ. To confirm that Λ is quasi-hyperbolic, in fact, it suffices
to find an isolating neighborhood containing the image of the zero section.

Proposition 10 ([1], Proposition 2.5). Assume that N ⊂ TΛ is an isolating
neighborhood with respect to Tf : TΛ → TΛ and N contains the image of
the zero-section of TΛ. Then Λ is quasi-hyperbolic.

Next, we check that the hypothesis of Theorem 9 is satisfied in the case
of the complex Hénon map. Let us define

R(a, c) :=
1
2
(1 + |a| +

√
(1 + |a|)2 + 4c),

S(a, c) := {(x, y) ∈ C
2 : |x| ≤ R(a, c), |y| ≤ R(a, c)}.

Then the following holds as in the case of the real Hénon map [1, Lemma 4.1].

Lemma 11. The chain recurrent set R(Ha,c) is contained in S(a, c). Fur-
thermore, Ha,c restricted to R(Ha,c) is chain recurrent.

To prove Lemma 5, therefore, it suffices to show that R(Ha,c) is quasi-
hyperbolic for (a, c) ∈ L. By Proposition 10, all we have to do is to find
an isolating neighbourhood that contains the image of the zero-section of
TR(Ha,c). More precisely, it is enough to find N ⊂ TM such that

R(Ha,c) ⊂ N and Inv(N,THa,c) ⊂ intN

hold. Here we identify R(Ha,c) and its image by the zero-section of TM .
Since there are algorithms [1, Proposition 3.3] that efficiently compute rig-
orous outer approximations of R(Ha,c) and Inv(N,THa,c), these conditions
can be checked on computers rigorously.

In practice, we fix the parameter a to +1 (or 0, 25, −0.375, −1) and regard
{H1,c} as a parametrized family with a single complex parameter c ∈ C. In
the parameter plane, we define

C := {c ∈ C : | Im c| ≤ 8 and |Re c| ≤ 8}.
If c �∈ C then (1, c) ∈ HOV, and thus we do not need to check the hyper-
bolicity for such c. Furthermore, our computation can be restricted to the
case when Im c ≥ 0 because H1,c and H1,c̄ are conjugate via φ and hence
the hyperbolicity of these two maps are equivalent.

Finally, we perform Algorithm 3.6 of [1] for the family {H1,c} with the
initial parameter set C ∩ {Im c ≥ 0}. The algorithm inductively subdivide
the initial parameter set and outputs a list of parameter cubes on which



12 Z. ARAI

the quasi-hyperbolicity is verified. This proves the quasi-hyperbolicity of
R(H1,c) for (1, c) ∈ Lp. The quasi-hyperbolicity for Lq, Lr and Ls is also
obtained by applications of the same algorithm.

Performed on a single 2.5GHz PowerPC G5 CPU, the computation takes
1496.5 hours, 1348.6 hours, 1496.1 hours and 1288.7 hours for Lp, Lq, Lr

and Ls, respectively.

4. Monodromy

In this section, we develop an algorithm for computing the monodromy
homomorphism ρ.

Let γ : [0, 1] → HC
0 be a loop based at γ(0) = γ(1) = (a0, c0) ∈ DN. Since

ρ(γ) is defined in terms of conjugacies ht = hγ
t : KC

γ(t) → Σ2 along γ, we
first discuss how to compute them.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Re x

Re y

Figure 7. At t = 0: the initial partition N0
0 and N1

0 .

Let us recall the definition of ht. Define

K0
0 := {(x, y) ∈ KC

γ(0) : Re y ≤ 0}, K1
0 := {(x, y) ∈ KC

γ(0) : Re y ≥ 0}.
By the argument of Devaney and Nitecki [12], we have K0

0 ∩ K1
0 = ∅ and

the partition KR

γ(0) = K0
0 ∪ K1

0 induces a topological conjugacy h0. The
continuation of this partition along γ is defined by

K0
t := {z ∈ KC

γ(t) : the continuation of z along γ at t = 0 is in K0
0},

K1
t := {z ∈ KC

γ(t) : the continuation of z along γ at t = 0 is in K1
0}.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Re x

Re y

Figure 8. At t = 1: the partition N0
1 and N1

1 , obtained by
continuing N0

0 and N1
0 along γq.

The conjugacy ht is, by definition, the symbolic coding with respect to this
partition. Namely,

(ht(z))i :=

{
0 if H i

γ(t)(z) ∈ K0
t

1 if H i
γ(t)(z) ∈ K1

t .

To determine this conjugacy, however, we do not need to compute K0
t and

K1
t exactly. It suffices to have rigorous outer approximations of them. That

is, if N0
t and N1

t are disjoint subsets of C
2 such that K0

t ⊂ N0
t and K1

t ⊂ N1
t

hold for all t ∈ [0, 1], then kt : KC

γ(t) → Σ2 defined by

(kt(z))i :=

{
0 if H i

γ(t)(z) ∈ N0
t

1 if H i
γ(t)(z) ∈ N1

t

is identical to ht.
Here is an algorithm to construct such N0

t and N1
t .

step 1. Subdivide the interval [0, 1] into n closed intervals I1, I2, . . . , In of
equal length.

step 2. Using interval arithmetic, we compute a cubical set Nk for each
1 ≤ k ≤ n such that KC

a,c ⊂ Nk rigorously holds for all (a, c) ∈ γ(Ik).
Define Nt := Nk for t ∈ Ik.

step 3. Consider the set

N :=
⋃

t∈[0,1]

{t} ×Nt ⊂ [0, 1] × C
2.
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Let N0 and N1 be the unions of the components of N which intersect
with {0} × {Re y ≤ 0} and {0} × {Re y ≥ 0}, respectively. If
N0 ∩ N1 = ∅, define N0

t = Nt ∩ N0 and N1
t = Nt ∩ N1 then stop.

If this is not the case, we refine the subdivision of [0, 1] and the grid
of C

2, and then go back to step 1.
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0 1
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Figure 9. The change of the partition along γp, γq, γr and γs.

Applying the algorithm above to the loop γq, we obtain Figures 7 and
8. The interval [0, 1] is decomposed into n = 28 sub-intervals, and the size
of the grid for C

2 is 2−8 in each direction. The lightly and darkly shaded
regions in Figure 7 are N0

0 and N1
0 . Similarly, Figure 8 illustrates N0

1 and
N1

1 . Notice that two partitions differ only in four blocks on the left hand
side: two blocks of each of N0

0 and N1
0 are interchanged. Using rigorous

interval arithmetic, these blocks are identified as blocks corresponding to
the symbol sequences 10.100 and 11.100 where the dot separates the head
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and the tail of a sequence. By the head of s = (si)i∈Z we mean the sequence
{. . . s−3s−2s−1s0} and by the tail {s1s2s3 . . . }.

We execute the same computation also for loops γp, γr and γs. This
yields Figure 9, which shows a schematic picture of the change along these
loops. Notice that “head” and “tail” labels in the figure indicates the symbol
coding according to the initial partition N0

0 andN1
0 , illustrated in the central

square.
Now, we can compute the image of γ = γp (or γq, γr, γs) by ρ as follows:

Choose a symbol sequence s = (si)i∈Z ∈ Σ2. Then z := h0(s) is located
in the central square of Figure 9. By definition, ρ(γp)(s) is the symbolic
coding of the same point z, but with respect to the partition on the top left
corner of Figure 9. Since two partitions differ only on blocks 0010.100 and
0011.100, it follows that (ρ(γ(s)))i �= si if and only if H i

γ(0)(z) is contained
in these bocks. Namely,

(ρ(γ(s)))i =

⎧⎪⎨
⎪⎩

0 if si−3si−2si−1sisi+1si+2si+3 = 0011100
1 if si−3si−2si−1sisi+1si+2si+3 = 0010100
si otherwise.

Similarly we can compute ρ(γq), ρ(γr) and ρ(γs). This proves Proposition 7.

Counting Periodic Orbits

In this appendix, we prove Theorem 1 directly from Corollary 6, without
any monodromy argument. Instead of using Theorem 3, we show that the
number of periodic points in KR

a,c is different from that of a full horseshoe.
Specifically, we claim that the number of points in Fix(Hn

a,c)∩R
2 is exactly

as in Figure 10.

DN Lp ∩ R
2 Lq ∩ R

2 Lr ∩ R
2 Ls ∩ R

2 EMP
n = 3 8 8 8 2 2 0
n = 4 16 16 16 16 8 0
n = 5 32 22 22 22 12 0
n = 6 64 52 40 52 28 0
n = 7 128 114 72 72 44 0

Figure 10. The number of points in Fix(Hn
a,c) ∩ R

2.

We use the Conley index theory to prove the claim. The reader not
familiar with the Conley index may consult [17, 19].

Assume (a, c) is in one of Ip, Iq, Ir or Is. We remark that the uniform
hyperbolicity of KR

a,c implies that the number of periodic points in KR
a,c is

constant on these intervals.
First we compute a lower bound for the number of periodic points. We

begin with finding periodic points numerically. Since periodic points are of
saddle type and hence are numerically unstable, we apply the subdivision
algorithm [11] to find them. For each periodic orbit found numerically, we
then construct a cubical index pair [17]. The existence of a periodic point
in this index pair is then proved by the following Conley index version of
Lefschetz fixed point theorem.
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Theorem 12 ([17, Theorem 10.102]). Let (P1, P0) be an index pair for f
and fP∗ the homology index map induced by f . If

∑
k(−1)k tr fn

P∗k �= 0 then
Inv(cl (P1 \ P0), f) contains a fixed point of fn.

This theorem assures that there exists at least one periodic orbit in each
index pair, and therefore we obtain a lower bound for the number of points
in Fix(Hn

a,c) ∩ R
2.

To compute an upper bound, we have two methods.
One is to prove the uniqueness of the periodic orbit in each index pair.

As long as the size of the grid used in the subdivision algorithm was fine
enough, we can expect that each index pair isolates exactly one periodic
orbit of period n. Since periodic points are hyperbolic, uniqueness can be
achieved by a Hartman-Grobman type theorem [2, Proposition 4.1].

The other one is to use the fact that the number of fixed points of Hn
a,c :

C
2 → C

2 is independent of the parameter, in fact it is 2n, counted with
multiplicity [13, Theorem 3.1]. In our case, the uniform hyperbolicity implies
that the multiplicity is always 1 and hence there are exactly 2n distinct
points in Fix(Hn

a,c). Therefore, if we find k distinct fixed points of Hn
a,c

outside R
2, then the cardinality of Fix(Hn

a,c)∩R
2 must be less than or equal

to 2n − k. Again, we can apply Theorem 12 to establish the existence of
fixed points in C

2 \ R
2. This gives an upper bound.

For all cases shown in Figure 10, the lower and upper bounds obtained
by methods above coincide. Thus our claim follows.
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