
A rigorous numerical algorithm for computing the

linking number of links

Zin Arai

Department of Mathematics, Hokkaido University
zin@math.sci.hokudai.ac.jp

January 31, 2013

Abstract

We propose a rigorous numerical algorithm for computing the linking
number of links defined by spatially distributed data points. The key idea
is to use an analytic expression for the solid angle of a tetrahedron for
quick evaluation of the degree of the Gauss map. An implementation of
the algorithm with INTLAB, a Matlab toolbox for reliable computing, is
also provided.

1 linking number

Recently we have seen an increasing interest in computational topology. More
and more applications appear inside and outside mathematics: image analysis,
sensor networks, protein/cell structures, etc. The main tool of computational
topology have been, so far, the set of algorithms to compute the homology
group of given geometric data, such as CHomP [1]. The aim of the paper is to
add a new tool to computational topology by developing a rigorous algorithm
for computing the linking number of links. Note that the linking number is a
homotopical, rather than homological, invariant.

Our algorithm is designed to handle spatially distributed data points di-
rectly; it do not assume that the projection of the link to a plane is known.
This is because what we have in mind as input data is the data coming from
numerical or physical experiments, and thus taking projection of such noisy
experimental data might cause numerical unstability. The output of CHomP
also fits into this format and therefore we can easily combine CHomP and our
algorithm.

We begin by recalling the definition of the linking number. The linking
number lk(K,L) of two disjoint oriented knots K,L : S1 → R3 is a topological
invariant which counts the number of times that each curve winds around the
other. The precise definition of the linking number can be given in several

1

equivalent ways [3]; the one we will apply involves the Gauss map f from T 2 =
S1 × S1 to S2 defined by

f(u, v) =
K(u)− L(v)

|K(u)− L(v)|
,

which is well defined since we assume that K and L are disjoint. Then lk(K,L)
is defined to be the degree deg(f) of the Gauss map, namely the integer which
satisfies

f∗([T
2]) = deg(f)[S2].

Here [T 2] ∈ H2(T
2) ∼= Z and [S2] ∈ H2(S

2) ∼= Z are the fundamental classes of
T 2 and S2, respectively. In our case of f : S1 ×S1 → S2, this number coincides
with the oriented area of the image of f divided by the area of S2, that is,

lk(K,L) = deg(f) =
vol (f(T 2))

vol (S2)
(1)

where “vol ” denotes the area on the sphere S2.
In the following, we assume that K and L are represented by points dis-

tributed in R3. Precisely, the data we are given is two sets of points {k1, k2, . . . km}
and {l1, l2, . . . ln} ⊂ R3. The knots K and L are defined to be the piecewise-
affine closed loop connecting these points in the cyclic order. Remark that since
the linking number is a homotopy invariant, we can also handle smooth knots
within this framework by taking piecewise-linear approximations of the knots.

Then, the area we want to compute is decomposed into a sum of the areas
of smaller regions on the torus as follows:

vol (f(T 2)) =
∑

1≤i≤m

∑
1≤j≤n

vol (f(Tij)), (2)

where Tij is a rectangular region on T 2 defined by four points

(pi, qj), (pi, qj+1), (pi+1, qj), (pi+1, qj+1) ∈ T 2

where K(pi) = ki, K(pi+1) = ki+1, L(qj) = lj and L(qj+1) = lj+1. Here we
identify m+ 1 with 1, and n+ 1 with 1.

Then we ask what the image f(Tij) is. First we focus on a boundary segment
of Tij that connects (pi, qj) and (pi, qj+1). Since we assume that K and L are
piecewise-affine curves, the image of this segment is a piece of great circle passing
through two points on the unit sphere that are given as the intersections of the
sphere with the lines connecting the origin to lj − ki and lj+1 − ki. The image
of other boundary segments can similarly be described as great circle arcs.

To compute each summand vol (f(Tij)), we will make use of an equality
obtained by Van Oosterom and Strackee [2]. Consider a tetrahedron based at
the origin of R3 and spanned by three non-zero vectors a, b and c ∈ R3. Then
the equality expresses the solid angle Ω(a, b, c) of the tetrahedron in terms of
these vectors:

tan

(
1

2
Ω(a, b, c)

)
=

[a b c]

|a||b||c|+ (a · b)|c|+ (c · a)|b|+ (b · c)|a|
.

2

k i

k i+1

l j

l j+1

Figure 1: Pieces of K, L and the vectors connecting vertices.

Here [a b c] denotes the triple scalar product a · (b× c) of a, b and c (coincides
with the determinant of the 3-by-3 matrix composed of a, b and c). Remark that
even when vectors a, b and c are dependent, the equality holds because then the
tetrahedron is collapsed and thus its solid angle is 0, while [a b c] is also 0. We
notice that Ω(a, b, c) is the area of the triangle on the unit sphere whose vertices
are the intersection of lines connecting the origin with a, b and c (see Figure 2).

a

b

c

(a, b, c)Ω

Figure 2: The solid angle of the spherical triangle defined by a, b and c.

3

Therefore, by applying the arc-tangent function, we obtain

1

2
vol (f(Tij)) = arctan

(
[α β γ]

|α||β||γ|+ (α · β)|γ|+ (γ · α)|β|+ (β · γ)|α|

)
+arctan

(
[γ δ α]

|γ||δ||α|+ (γ · δ)|α|+ (α · γ)|δ|+ (δ · α)|γ|

) (3)

where

α = lj − ki, β = lj − ki+1, γ = lj+1 − ki+1, δ = lj+1 − ki.

Here by arctan(y/x) we precisely mean atan2(y, x), the angle in radians be-
tween the positive x-axis of a plane and the point (x, y) (see [2] for the detail).

Summarizing, we can compute the linking number lk(K,L) by substituting
the equality (3) into (2) and then (2) into (1).

2 Algorithm and Implementation

In the previous section, we saw that the degree of the Gauss map can be evalu-
ated by computing the following objects: the inner product, the norm and the
scalar product of vectors; the arc-tangent of a real number. All these computa-
tions can be manipulated on a computer, in a mathematically rigorous way, by
introducing interval arithmetic.

The following is a straightforward implementation of the formula given in
the previous section.

Algorithm 1 (Computing the Linking Number)
Input: floating-point vectors {k1, k2, . . . km}, {l1, l2, . . . ln} ⊂ R3.
Output: an interval I

interval I = [0, 0]
interval vectors α, β, γ, δ
for i = 1 to m do
for j = 1 to n do

α = lj − ki, β = lj − ki+1, γ = lj+1 − ki+1, δ = lj+1 − ki.
I = I + Solid Angle(α, β, γ) + Solid Angle(γ, δ, α)

end for
end for
I = I/(4π)
return I

Here by Solid Angle we mean a function that takes three interval vectors
a, b, c and returns an interval containing the solid angle Ω(a, b, c). The function
Solid Angle may return an error, as we will see in Algorithm 3, and if this is
the case then Algorithm 1 terminates with an error.

Provided that all the computations are executed rigorously without any er-
ror, the true value of vol (Im (f)) and thus the linking number lk(K,L) should be
contained in the resulting interval I. Therefore, we have the following theorem.

4

Theorem 2 If Algorithm 1 returns an interval that contains exactly one integer
l, then we have l = lk(J,K).

The algorithm above is implemented with INTLAB [4], a Matlab toolbox
for interval arithmetic, and the source code is available at the author’s web site
http://www.math.sci.hokudai.ac.jp/~zin/

There is no essential difficulty in implementing the algorithm with INTLAB.
However, we need to pay some attention to the discontinuity of atan2(y, x),
which appears on {x < 0, y = 0}. Since INTLAB does not have atan2 function,
our implementation of solid angle use atan function instead as follows.

Algorithm 3 (Computing the Solid Angle with atan)
Input: interval vectors a, b, c
Output: interval A = Solid Angle(a, b, c)

interval I, J
J = |a||b||c|+ (a · b)|c|+ (c · a)|b|+ (b · c)|a|
if (0 ∈ J) then
if (I > 0) then

A = −atan(J/I) + π/2
else if (I < 0) then

A = −atan(J/I)− π/2
else

return error
end if

else
I = [a b c]
if (J > 0) then

A = atan(I/J)
else if (I > 0) then

A = atan(I/J) + π
else if (I < 0) then

A = atan(I/J)− π
else

return error
end if
return 2 ∗A

end if

Here by I > 0 we mean that both ends of the interval I is greater than 0. The
Algorithm 3 fails when I = [abc] and J = |a||b||c|+(a · b)|c|+(c ·a)|b|+(b · c)|a|
both contain 0. It also fails when the discontinuity of atan2 appears, that is,
when J is negative and I contains 0. In practical applications, as we will see in
the next section, these error rarely occur.

Remark 4 Assume that we do not know the exact value of {k1, k2, . . . km} and
{l1, l2, . . . ln}, but we are given the sets {K1,K2, . . .Km} and {L1, L2, . . . Ln}

5

where Ki, Lj ⊂ R3 are products of intervals and such that ki ∈ Ki and lj ∈ Lj

hold. The set Ki can be regarded as an “error bar” around the point ki. Our
implementation can equally be applied to this noisy data without any change
since INTLAB library can handle numbers and intervals in the same manner;
we just input Ki and Lj (interval vector) instead of ki and lj (vector). As
we will see in the next section, This simple treatment of noise, however, works
fine only when the amplitude of the noise is small enough. See Example 7 in
the next section.

3 Examples

In this section, we show some examples of the application of the algorithm. All
the computation is done on an Apple MacPro with 2.93 GHz Intel Xeon CPU.

Example 5 (Hopf link) The Hopf link is the simplest non-trivial link con-
sisting two unknotted circles linked together so that the linking number is ±1,
depending on the orientations. Consider two circles K and L represented by

{k1, k2, . . . , k8} =

{(
1
0
0

)
,

(
1
1
0

)
,

(
0
1
0

)
,

(−1
1
0

)
,

(−1
0
0

)
,

(−1
−1
0

)
,

(
0
−1
0

)
,

(
1
−1
0

)}
and

{l1, l2, . . . , l8} =

{(
0
0
0

)
,

(
0
0
1

)
,

(
1
0
1

)
,

(
2
0
1

)
,

(
2
0
0

)
,

(
2
0
−1

)
,

(
1
0
−1

)
,

(
0
0
−1

)}
.

−1

0

1

2 −1

0

1

−1

0

1

−1

0

1

2 −1

0

1

2

−1

0

1

Figure 3: The Hopf link (left) and a trivial link (right).

Topologically, they form a Hopf link whose liking number is +1, as illustrated
in Figure 3. The dotted line and the solid line represent the knots K and L,
respectively. By applying our algorithm to these points, we obtain an interval
[0.99999999999999, 1.00000000000001]. It contains exactly one integer, namely
the correct linking number lk(K,L) = 1.

6

Example 6 (a trivial link) Now we replace L of the previous example with
a circle given by

{l1, l2, . . . , l8} =

{(
0
2
0

)
,

(
0
2
1

)
,

(
1
2
1

)
,

(
2
2
1

)
,

(
2
2
0

)
,

(
2
2
−1

)
,

(
1
2
−1

)
,

(
0
2
−1

)}
.

Then K and L are not linked to each other and therefore the linking number
should be 0 (see Figure 3). Actually, the algorithm returns [−0.37437779063061×
10−15, 0.47156140589755 × 10−15], which contains exactly one integer 0, which
is the correct linking number.

Example 7 (Hopf link with noise) We again consider the Hopf link defined
by the same points as Example 5, but now we put a bounded noise on data
points. Namely, each data point is replaced by a regular hexahedron centered at
the point. For example, if we replace each point with a regular hexahedron with
radius 0.02, then our algorithm returns [0.32445624257739, 1.80336874019784].
This interval still contains only one integer and therefore we can conclude any
link that is given by points contained in these regular hexahedrons should
have the same linking number, 1. However, if we use the hexahedron of ra-
dius 0.03, then the resulting interval is [−0.01296718559705, 2.31661672274700],
which contains 0, 1 and 2. In this case thus we can not determine the linking
number uniquely.

Example 8 (randomly generated links) Now we examine the validity of
the algorithm with more practical examples involving a larger number of points
that are distributed in a complicated manner. For this purpose, we consider the
knots K and L defined by randomly generated points in [0, 1]3 ⊂ R3. Figure 4
shows an example of such a link with n = m = 20 data points for which
our algorithm returns [2.99999999999976, 3.00000000000024]. The only integer
contained in this interval is 3, therefore we can conclude the linking number
lk(K,L) is 3.

The next example, shown in Figure 5, is a randomly generated link with
n = 10 and m = 40. Note that the product n ×m is the same as before. For
this link, our algorithm returns [−2.00000000000021,−1.99999999999979], thus
we know that the linking number is −2.

Similarly, we obtain [1.99999999999427, 2.00000000000573] for the link with
n = m = 100 data points shown in Figure 6. Again, there is exactly one integer
in this interval, implying that the linking number is 2.

We remark that in all examples above, solid angle does not return any
error.

The elapsed times in these examples are 5.996162 seconds for n = m = 20,
6.029830 seconds for n = 10,m = 40 and 149.592007 seconds for n = m = 100.
It is easy to see that the computational cost of Algorithm 1 is proportional to
n×m. In fact, the ratio of elapsed times 149.592007/5.996162 = 24.833333 . . .
is almost the same as the expected ratio 1002/202 = 25.

7

0

0.5

1 0

0.5

1

0

0.5

1

Figure 4: Randomly generated links of length n = m = 20.

Acknowledgments

This work is partially supported by JST CREST, and by JSPS Grants-in-Aid for
Scientific Research (23684002). The author would like to thank Akane Kawa-
harada for her helpful comments on the manuscript. Special thanks also go to
the anonymous reviewers and Dr. Simon Copar for their helpful remarks that
improved the paper.

References

[1] Computational Homology Project (CHomP) website,
http://chomp.rutgers.edu/

[2] A. Van Oosterom and J. Strackee, “The Solid Angle of a Plane Triangle”,
IEEE Trans. Biomed. Eng., vol. BME-30, no. 2, pp. 125–126, 1983.

[3] D. Rolfsen, Knots and Links, Publish or Perish, 1976.

[4] S. M. Rump, “INTLAB - INTerval LABoratory”, in Developments in Re-
liable Computing, ed. T. Csendes, 77–104, Kluwer Academic Publishers,
1999.

8

0

0.5

1 0

0.5

1

0

0.5

1

Figure 5: Randomly generated links of length n = 10,m = 40.

0

0.5

1 0

0.5

1

0

0.5

1

Figure 6: Randomly generated links of length n = m = 100.

9

