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Abstract

We propose a rigorous computational method to prove the uniform
hyperbolicity of discrete dynamical systems. Applying the method
to the real Hénon family, we prove the existence of many regions of
hyperbolic parameters in the parameter plane of the family.

1 Introduction

Consider the problem of determining the set of parameter values for which
the real Hénon map

Ha,b : R
2 → R

2 : (x, y) �→ (a − x2 + by, x) (a, b ∈ R)

is uniformly hyperbolic. If a dynamical system is uniformly hyperbolic, gen-
erally speaking, we can apply the so-called hyperbolic theory of dynamical
systems and obtain many results on the behavior of the system. Despite its
importance, however, proving hyperbolicity is a difficult problem even for
such simple polynomial maps as the Hénon maps.

The first mathematical result about the hyperbolicity of the Hénon map
was obtained by [Devaney and Nitecki 79]. They showed that for any fixed
b, if a is sufficiently large then the non-wandering set of Ha,b is uniformly
hyperbolic and conjugate to the full horseshoe map, that is, the shift map
of the space of bi-infinite sequences of two symbols.

Later, Davis, MacKay and Sannami [Davis et al. 91] conjectured that
besides the uniformly hyperbolic full horseshoe region, there exist some pa-
rameter regions in which the non-wandering set of the Hénon map is uni-
formly hyperbolic and conjugate to a subshift of finite type. For some pa-
rameter intervals of the area preserving Hénon family Ha,−1, they identified
the Markov partition by describing the configuration of stable and unstable
manifolds (see also [Sterling et al. 99, Hagiwara and Shudo 04]). Although
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the mechanism of hyperbolicity at these parameter values is clear by their
observations, no mathematical proof of the uniform hyperbolicity has been
obtained so far.

The purpose of this paper is to propose a general method for proving
uniform hyperbolicity of discrete dynamical systems. Applying the method
to the Hénon map, we obtain a computer assisted proof of the hyperbolicity
of Hénon map on many parameter regions including the intervals conjectured
by Davis et al.

Our results on the real Hénon map are summarized in the following
theorems. We denote by R(Ha,b) the chain recurrent set of Ha,b.

Theorem 1.1. There exists a set P ⊂ R
2, which is the union of 8943 closed

rectangles, such that if (a, b) ∈ P then R(Ha,b) is uniformly hyperbolic. The
set P is illustrated in Figure 1 (shaded regions), and the complete list of the
rectangles in P is given as a supplemental material to the paper.

The hyperbolicity of the chain recurrent set implies the R-stability.
Therefore, on each connected component of P , no bifurcation occurs in
R(Ha,b) and hence numerical invariants such as the topological entropy, the
number of periodic points, etc., are constant on it. For this reason, we call
it a “plateau”.

Note that Theorem 1.1 does not claim that a parameter value not in
P is a non-hyperbolic parameter. It only guarantees that P is a subset of
the uniformly hyperbolic parameter values. We can refine Theorem 1.1 by
performing more computations, which yields a set P ′ of uniformly hyperbolic
parameters such that P ⊂ P ′.

Since the area-preserving Hénon family is of particular importance, we
performed another computation restricted to this one-parameter family and
obtained the following.

Theorem 1.2. If a is in one of the following closed intervals,

[4.5383300781250, 4.5385742187500], [4.5388183593750, 4.5429687500000],

[4.5623779296875, 4.5931396484375], [4.6188964843750, 4.6457519531250],

[4.6694335937500, 4.6881103515625], [4.7681884765625, 4.7993164062500],

[4.8530273437500, 4.8603515625000], [4.9665527343750, 4.9692382812500],

[5.1469726562500, 5.1496582031250], [5.1904296875000, 5.5366210937500],

[5.5659179687500, 5.6077880859375], [5.6342773437500, 5.6768798828125],

[5.6821289062500, 5.6857910156250], [5.6859130859375, 5.6860351562500],

[5.6916503906250, 5.6951904296875], [5.6999511718750, ∞),

then R(Ha,−1) is uniformly hyperbolic.
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Figure 1: uniformly hyperbolic plateaus
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We remark that the three intervals considered to be hyperbolic param-
eter values by Davis et al. appear in Theorem 1.2. Thus we can say that
Theorem 1.2 justifies their observations.

It is interesting to compare Figure 1 with the bifurcation diagrams of
the Hénon map numerically obtained by [Hamouly and Mira 81], and by
[Sannami 89, Sannami 94]. The boundary of P shown in Figure 1 are very
close to the bifurcation curves given in these papers.

Recently Cao, Luzzatto and Rios [Cao et al. 05] showed that the Hénon
map has a tangency and hence is non-hyperbolic if the parameter is on the
boundary of the full horseshoe plateau (see also [Bedford and Smillie 04a,
Bedford and Smillie 04b]). This fact and Theorem 1.2 suggests that Ha,−1

should have a tangency when a is close to 5.699951171875. In fact, we
can prove the following theorem using the rigorous computational method
developed in [Arai and Mischaikow 05].

Proposition 1.3. There exists a ∈ [5.6993102, 5.6993113] such that Ha,−1

has a homoclinic tangency with respect to the saddle fixed point on the third
quadrant.

Consequently, Theorem 1.2 and Proposition 1.3 yields the following.

Corollary 1.4. When we decrease a ∈ R of the area-preserving Hénon
family Ha,−1, the first tangency occurs in [5.6993102, 5.699951171875).

We remark that Hruska [Hruska 05, Hruska 06] also constructed a rig-
orous numerical method for proving hyperbolicity of complex Hénon maps.
The main difference between our method and Hruska’s method is that our
method does not prove hyperbolicity directly. Instead, we proves quasi-
hyperbolicity, which is equivalent to uniform hyperbolicity under the as-
sumption of chain recurrence. This rephrasing enables us to avoid the com-
putationally expensive procedure of constructing a metric adapted to the
hyperbolic splitting. Another peculiar feature of our algorithm is that it is
based on the subdivision algorithm (see [Dellnitz and Junge 02a]) and hence
effective for inductive search of hyperbolic parameters.

Finally, we remark that the method developed in the paper can also be
applied to higher dimensional dynamical systems. In fact, by applying the
method to the complex Hénon map, we obtains a proof for Conjecture 1.1
of [Bedford and Smillie 05] (See [Arai 06]).

The structure of the rest of the paper is as follows. The notion of quasi-
hyperbolicity will be introduced in §2 and then an algorithm for proving
quasi-hyperbolicity will be proposed in §3. In the last section, §4, we apply
the method to the Hénon family and obtain Theorem 1.1 and 1.2.
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2 Hyperbolicity and Quasi-Hyperbolicity

First we recall the definition of hyperbolicity. Let f be a diffeomorphism on
a manifold M and Λ a compact invariant set of f . We denote by TΛ the
restriction of the tangent bundle TM to Λ.

Definition 2.1. We say that f is uniformly hyperbolic on Λ, or Λ is a
uniformly hyperbolic invariant set of f if TΛ splits into a direct sum TΛ =
Es ⊕ Eu of two Tf -invariant subbundles and there are constants c > 0 and
0 < λ < 1 such that

‖Tfn|Es‖ < cλn and ‖Tf−n|Eu‖ < cλn

hold for all n ≥ 0. Here ‖ · ‖ denotes a metric on M .

We note that this definition involves many ingredients, constants c and
λ, a splitting of TΛ, and a metric on M . If we try to prove hyperbolicity
according to this definition, we must control these objects at the same time,
and the algorithm would be rather complicated. Although we can omit the
constant c by choosing a suitable metric on M , constructing such a metric
is also a difficult problem in general. The situation is the same even if we
use the standard “cone fields” argument.

To avoid this computational difficulty, we introduce the notion of quasi-
hyperbolicity. Recall that the differential of f induces a dynamical system
Tf : TM → TM . By restricting it to the invariant set TΛ, we obtain
Tf : TΛ → TΛ. An orbit of Tf is called a trivial orbit if it is contained in
the zero section of the bundle TΛ.

Definition 2.2. We say that f is quasi-hyperbolic on Λ if Tf : TΛ → TΛ
has no non-trivial bounded orbit.

This definition is much simpler than that of the uniform hyperbolicity
and is a purely topological condition for Tf . It is easy to see that hyper-
bolicity implies quasi-hyperbolicity. The converse is not true in general,
although the hyperbolicity of periodic points and the non-existence of a
tangency follows from the quasi-hyperbolicity.

However, when f |Λ is chain recurrent, these two notions coincide.

Theorem 2.3 ([Churchill et al. 77, Sacker and Sell 74]). Assume that f |Λ
is chain recurrent, that is, R(f |Λ) = Λ. Then f is uniformly hyperbolic on
Λ if and only if f is quasi-hyperbolic on it.
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pq

Figure 2: Λ := {p} ∪ {q} ∪ (W u(p) ∩ W s(q)) is quasi-hyperbolic, but is not
uniformly hyperbolic.

Remark 2.4. The assumption of chain recurrence is essential for uniform
hyperbolicity. For example, consider two hyperbolic saddle fixed points p
and q in R

3, with 1 and 2 dimensional unstable direction respectively. As-
sume that the unstable manifold W u(p) of p intersects the stable manifold
W s(q) of q, in a way that the sum of the tangent spaces of these two 1-
dimensional manifolds span a 2-dimensional subspace of R

3 (see Figure 2).
Let Λ := {p} ∪ {q} ∪ (W u(p) ∩ W s(q)). Then Λ is quasi-hyperbolic, but
clearly not uniformly hyperbolic because it contains fixed points with dif-
ferent unstable dimensions and a connecting orbit between them.

Next, we rephrase the definition of quasi-hyperbolicity in terms of isolat-
ing neighborhoods. Recall that a compact set N is an isolating neighborhood
(see [Mischaikow and Mrozek 02]) with respect to f if the maximal invariant
set

Inv(f,N) := {x ∈ N | fn(x) ∈ N for all n ∈ Z}
is contained in int N , the interior of N . An invariant set S of f is said to
be isolated if there is an isolating neighborhood N such that Inv(f,N) = S.

Note that the linearity of Tf in fibers of TΛ implies that if there is a
non-trivial bounded orbit of Tf : TΛ → TΛ, then its multiplication with a
constant is also a non-trivial bounded orbit and hence any compact neigh-
borhood N of the zero-section of TΛ contains a non-trivial bounded orbit.
Therefore, the definition of quasi-hyperbolicity is equivalent to saying that
the zero section of the tangent bundle TΛ is an isolated invariant set with
respect to Tf : TΛ → TΛ.

Furthermore, it suffice to find an isolating neighborhood that contains
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the zero section.

Proposition 2.5. Assume that N ⊂ TΛ is a isolating neighborhood with
respect to Tf : TΛ → TΛ and N contains the image of the zero-section of
TΛ. Then Λ is quasi-hyperbolic.

Proof. For a subset S of TM and δ ≥ 0, we define δS := {δ · v | v ∈ S}.
By linearity of Tf , if S is Tf -invariant so is δS. Now we assume N is an
isolating neighborhood, that is, Inv(Tf,N) ⊂ int N . A standard compact-
ness argument shows that there is δ > 1 such that δ Inv(Tf,N) ⊂ N . Since
δ Inv(Tf,N) is Tf -invariant and contained in N , we have δ Inv(Tf,N) ⊂
Inv(Tf,N), by definition of the maximal invariant set. It follows that if
v ∈ Inv(Tf,N), we have δnv ∈ Inv(Tf,N) for all n ≥ 0. Since Inv(Tf,N)
is compact and hence bounded, v must be the zero vector. This implies that
there is no non-trivial bounded orbit of Tf : TΛ → TΛ.

3 Algorithm

In this section, we assume that M = Rn and consider a family of dif-
feomorphisms fa : R

n → R
n that depends on r-tuple of real parameters

a = (a1, . . . , ar) ∈ R
r. Define F : R

n×R
r → R

n and TF : TR
n×R

r → TR
n

by

F (x, a) := fa(x) and TF (x, v, a) := Tfa(x, v)

where x ∈ R
n and v ∈ TxR

n.
We denote by F the set of floating point numbers, or, the set of numbers

our computer can handle. Let IF be the set of intervals whose end-points
are in F. Namely,

IF := {I = [a, b] ⊂ R | a, b ∈ F}.
Similarly, we define a set of n-dimensional cubes by

IF
n := {I1 × · · · × In ⊂ R

n | Ii ∈ IF}.
Let X,F ∈ IF

n and A ∈ IF
r. We consider these cubes as subspaces of the

manifold M , the tangent space of M and the parameter space, respectively.
What we want to compute is the image of these cubes under the map F
and TF , namely, F (X × A) and TF (X × V × A). Note that these images
are not objects of IF

n nor IF
2n in general. By this fact and the effect of

rounding errors, we can not hope that a computer can exactly compute these
images. Instead, we require that out computer can enclose these images
using elements of IF

n and IF
2n.
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Assumption 3.1. There exists a computational method such that for any
X,V ∈ IF

n and A ∈ IF
r, it can computes Y ∈ IF

n and W ∈ IF
2n such that

F (X × A) ⊂ int Y and TF (X × V × A) ⊂ int W

hold rigorously.

Obviously, if the outer approximations Y and W in Assumption 3.1 are
too large, we can not derive any information of F nor TF . As we will
mention in the last section, for many classes of dynamical systems including
polynomial maps, the rigorous interval arithmetic can be used to satisfy this
assumption and gives effectively good outer approximations.

Let K ⊂ R
n be a compact set that contains Λ and L ⊂ TR

n the product
of K and [−1, 1]n. We assume that K is decomposed into a finite union of
elements of IF

n, namely,

K =
k⋃

i=1

Ki where Ki ∈ IF
n.

We also decompose the fiber [−1, 1]n ⊂ TxR
n into a finite union of elements

of IF
n. By making products of cubes contained in the decompositions of K

and [−1, 1], we obtain a decomposition of L such as

L =
�⋃

j=1

Lj where Lj ∈ IF
2n.

By Assumption 3.1, we can compute Yi ∈ IF
n and Wj ∈ IF

2n such that

F (Ki × A) ⊂ int Yi and TF (Lj × A) ⊂ int Wj

for any 1 ≤ i ≤ k and 1 ≤ j ≤ �.
From this information of Yi and Wj, we then construct directed graphs

G(F,K,A) and G(TF,L,A) as follows:

• G(F,K,A) has k vertices: {v1, v2, . . . , vk}.
• There exists an edge from vp to vq if and only if Yp ∩ Kq �= ∅.

And similarly,

• G(TF,L,A) has � vertices: {w1, w2, . . . , w�}.
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• There exists an edge from wp to wq if and only if Wp ∩ Nq �= ∅.

The most important property of G(F,K,A) is that if there exists x ∈ Kp

that is mapped into Kq by fa for some a ∈ A, then there must be an edge
of G(F,K,A) from vp to vq. This property also holds for G(TF,L,A).

We use these directed graphs to enclose the chain recurrent set of fa and
the maximal invariant set of N . For this purpose, we define the following
notions.

Definition 3.2. Let G be a directed graph. The vertices of Inv G, the
invariant set of G is defined by

{v ∈ G | ∃ bi-infinitely long path through v}.

The vertices of SccG, the set of strongly connected components of G is

{v ∈ G | ∃ path from v to itself}.

The edges of these graphs are defined to be the restriction of that of G.

Note that by definition, SccG is a subgraph of Inv G.
For subgraphs G of G(F,K,A) and G′ of G(TF,L,A), we define their

geometric representations |G| ⊂ R
n and |G′| ⊂ R

2nby

|G| :=
⋃

vi∈G

Ki, or |G′| :=
⋃

wj∈G′
Lj,

respectively. Obviously, |G(F,K,A)| = K and |G(TF,L,A)| = L.

Proposition 3.3. For any a ∈ A,

Inv(fa,K) ⊂ | Inv G(F,K,A)| and Inv(Tfa, L) ⊂ | Inv G(TF,L,A)|.

Furthermore, if R(fa) ⊂ int K holds for all a ∈ A, then we have

R(fa) ⊂ |SccG(F,K,A)|

for all a ∈ A.

Proof. The claims for maximal invariant sets follow from the construction
of G(F,K,A) and G(TF,L,A). We only prove R(fa) ⊂ |SccG(F,K,A)|.
Since F (Ki × {a}) ⊂ int Yi holds for all i and the number of cubes in K is
finite, we can choose ε > 0 such that for any i and x ∈ Ki, if y is a point
with d(fa(x), y) < ε then y must be contained in Yi. Here d denotes a fixed
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metric of R
n. This implies that if such y is contained in Kj , there must be

an edge from vi to vj. Let x ∈ R(fa). From the assumption, there exists
p such that x ∈ Kp. Since R(fa) ⊂ int K, we can assume that these is
an ε-chain from x to itself that is contained in K, by choosing smaller ε,
if necessary. It follows that there must be a path of G(F,K,A) from vp to
itself and therefore x ∈ |SccG(F,K,A)|. This proves the claim.

For the computation of Inv G, the algorithm of [Szymczak 97] can be
used. There is also an algorithm for computing SccG that is standard in
the algorithmic graph theory (see [Sedgewick 83], for example).

Now we can describe the algorithm to prove the quasi-hyperbolicity.
The algorithm involves the subdivision algorithm [Dellnitz and Junge 02a].
Roughly speaking, this means that if we fails to prove quasi-hyperbolicity,
then we subdivide all of the cubes in K and L to have a better approximation
of the invariant set, and repeat the whole step until we succeed the proof.

In the following, we first develop an algorithm for a fixed set of parameter
values. That is, we fix the set A and try to check if R(fa) is quasi-hyperbolic
for all a ∈ A. Note that we do not exclude the case A contains only one
parameter value, namely, A = {a} where a is a r-tuple of floating point
numbers.

Algorithm 3.4. (for proving quasi-hyperbolicity for all all a ∈ A)

1. Find K such that R(fa) ⊂ int K holds for all a ∈ A and let L :=
K × [−1, 1]n.

2. Compute SccG(F,K,A) and replace K with |SccG(F,K,A)|.
3. Replace L with L ∩ (K × [−1, 1]n).

4. Compute InvG(TF,L,A).

5. If | InvG(TF,K,A)| ⊂ K × int [−1, 1]n then stop.

6. Otherwise, replace L with | InvG(TF,L,A)| and refine the decompo-
sition of K and L by bisecting all cubes in them. Then goto step
2.

Theorem 3.5. If Algorithm 3.4 stops, then fa is quasi-hyperbolic on R(fa)
for every a ∈ A.

Proof. Assume that Algorithm 3.4 stops and choose a ∈ A. Let

Na = L ∩ (R(fa) × [−1, 1]n).
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Then Na contains the zero-section of TR(fa). By Proposition 2.5, it suf-
fice to show that Na is an isolating neighborhood with respect to Tfa :
TR(fa) → TR(fa). Since the algorithm stops,

Inv(Tfa, Na) ⊂ Inv(Tfa, L) ⊂ | Inv G(TF,L)| ⊂ K × int [−1, 1]n.

Then it follows from Inv(Tfa, Na) ⊂ Na ⊂ R(fa) × [−1, 1]n that

Inv(Tfa, Na) ⊂ R(fa) × int [−1, 1]n.

But R(fa) × int [−1, 1]n is the interior of Na with respect to TR(fa) and
this proves Inv(Tfa, Na) ⊂ int Na.

In other words, if A contains a non-quasi-hyperbolic parameter value,
then Algorithm 3.4 never stops. Therefore, if we want to apply the method
for a large family of diffeomorphism, the algorithm should involve an auto-
matic selection of parameter values.

We can also use the subdivision algorithm to realize such a procedure.
That is, we will inductively decompose A into a finite union of elements of
IF

r and remove cubes in which the hyperbolicity is proved. We denote by
A the set of cubes in the decomposition of A.

Algorithm 3.6. (adaptive selection of quasi-hyperbolic parameters)

1. Find K such that R(fa) ⊂ K holds for all a ∈ A.

2. Let A = {A0} where A0 = A and K0 = K, L0 = K0 × [−1, 1]n.

3. Choose a cube Ai ∈ A according to the “selection rule”.

4. Apply step 2, 3, and 4 of Algorithm 3.4 with A = Ai, K = Ki and
L = Li.

5. If | InvG(TF,Li)| ⊂ int Li then remove Ai from A and goto step 2.

6. Otherwise, bisect Ai into two cubes Aj, Ak. Remove Ai from A and
add Aj , Ak to A. Put Kj = Kk = Ki and Lj = Lk = InvG(TF,Li)
then goto step 2.

This algorithm does not stop neither if there is a non quasi-hyperbolic pa-
rameter in A. But it follows from Theorem 3.5 that if the cube Ai is removed
in the procedure of Algorithm 3.6, then Ai consists of quasi-hyperbolic pa-
rameter values.
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We did not specify the “selection rule” that appears in step 2 of Al-
gorithm 3.6. Various rules can be applied and the effectiveness of a rule
depends on the case.

One example of such a rule is selecting Ai such that Ni and Ki consist
of smaller number of cubes. Since the computational cost of the algorithm
depends on the number of cubes, this rule implies that our computation will
be concentrated on parameter values on which the computation is relatively
fast. By applying this rule, we can avoid wasting too much time trying
to prove the hyperbolicity for apparently non-hyperbolic parameter values.
This rule works sufficiently well for general purposes.

The problem with this rule is that sometimes computation is focused
only on parameters with small invariant set, for example, where R(fa) is a
single fixed point. If this is the case, the most of the computation will be
done on parameter cubes close to the bifurcation curve of the fixed point.
To avoid this, we can use the number of cubes multiplied by the subdivision
depth of Ai instead of the number of cubes itself.

Or, we can distribute our computational effort across the whole of the
parameter space equally by simply selecting all cubes in A sequentially.

4 Application to the Hénon Map

In this section, we apply the method developed in §2 and §3 to the chain
recurrent set R(Ha,b) of the Hénon family.

In order to apply the algorithm, we must know a priori the size of
R(Ha,b). Further, to apply Theorem 2.3, we need to check that the dy-
namics restricted to R(Ha,b) is chain recurrent.

First we recall the numbers defined in [Devaney and Nitecki 79]. Let

R(a, b) :=
1
2
(1 + |b| +

√
(1 + |b|)2 + 4a),

S(a, b) := {(x, y) ∈ R
2 : |x| ≤ R(a, b), |y| ≤ R(a, b)}.

Then we can prove the following.

Lemma 4.1. The chain recurrent set R(Ha,b) is contained in S(a, b). And
Ha,b restricted to R(Ha,b) is chain recurrent.

Proof. If x �∈ S(a, b), we can choose ε0 > 0 so small that if ε < ε0 then all
ε-chains thorough x must diverge to infinity and hence, x can not be chain
recurrent (this is a special case of Corollary 2.7 of [Bedford and Smillie 91]).
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The proof for the second claim is the same as that for the compact case (see
[Robinson 99] for example), because we can choose a compact neighborhood
S′ of S(a, b) and ε0 > 0 such that if ε < ε0 then all ε-chain from x ∈ R to
x must be contained in S′.

In the case of Hénon map, Assumption 3.1 can be satisfied with rigorous
interval arithmetic on a CPU that satisfies IEEE754 standard for binary
floating-point arithmetic. This is also the case for an arbitrary polynomial
map of R

n.
We remark that we only need to consider the case b ∈ [−1, 1]. Because,

the inverse of the Hénon map Ha,b is again conjugate to the Hénon map
Ha/b2,1/b, whose Jacobian is 1/b, and the hyperbolicity of a diffeomorphism
is equivalent to that of the inverse map. Further, we can restrict our com-
putation to the case (a, b) ∈ [−1, 12] × [−1, 1], for otherwise it follows from
the proof of [Devaney and Nitecki 79] that R(Ha,b) is hyperbolic or empty.

Therefore, we start with A := [−1, 12] × [−1, 1], K := [−8, 8] × [−8, 8]
and L = K × [−1, 1]2. Then Lemma 4.1 implies R(Ha,b) ⊂ int K holds for
all (a, b) ∈ A. With this initial data, Theorem 1.1 is proven by applying
Algorithm 3.6.

To obtain Theorem 1.2, we fix b = −1 and start the computation with
A := [4, 12]. The sets K and L are the same as the computation for Theo-
rem 1.1.
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Figure 3: results after 1, 10 and 100 hour computation (from left to right)

Finally, we mention the computational cost of the method. To achieve
Theorem 1.1, we need 1000 hours of computation using 2GHz PowerPC 970
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CPU. With the same CPU, 260 hours were used for Theorem 1.2. Figure 3
shows the intermediate results obtained after 1, 10 and 100 hours computa-
tion toward Theorem 1.2. We remark that as these figures suggest, almost
all computations time was spent on the parameter values close to bifurcation
curves.

All of the source codes used in these computations are available at
the home page of the author (http://www.math.kyoto-u.ac.jp/~arai/).
The data structure and the subdivision algorithm are implemented in the
GAIO package http://math-www.uni-paderborn.de/~agdellnitz/gaio/
[Dellnitz and Junge 02a] are used in these programs. For the interval arith-
metic, we use the package CAPD (http://capd.wsb-nlu.edu.pl/). You
can also use PROFIL/BIAS interval arithmetic package for this purpose
(http://www.ti3.tu-harburg.de/knueppel/profil).
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